×

The Betti map associated to a section of an abelian scheme. (English) Zbl 1460.11083

Any complex abelian variety \(A\) of dimension \(g\) can be represented as a complex torus \({\mathbb{C}}^g/{\mathcal L}\simeq ({\mathcal L}\otimes_{\mathbb{Z}}{\mathbb{R}})/{\mathcal L}\) and every point \(\xi\) of \(A\) may be identified by its \(2g\) real coordinates in a mesh of the lattice \({\mathcal L}\). When \((A,\xi)\) moves in an algebraic family, one gets the Betti map \(\beta\) from the parameter space \(S\) to \({\mathbb{R}}^{2g}\), which is a multivalued analytic map. This is a convenient tool for the study of the distribution of torsion values. The authors list a sample of classical or recent occurrences of torsion value problems and/or Betti maps, and undertake a systematic study of the Betti map. They relate the derivative of the Betti map to the Kodaira-Spencer map. Under natural hypotheses, they show that the Betti map of every section not contained in an algebraic subgroup is a submersion, and deduce the density of torsion values for every section.
Let \(A\to S\) be an abelian scheme of relative dimension \(g\) over a smooth complex algebraic variety, \(\xi:S\to A\) a section, \(\widetilde{S}\) the universal covering of \(S({\mathbb{C}})\), \(\widetilde{\beta}:\widetilde{S}\to {\mathbb{R}}^{2g}\) the associated Betti map. The authors give formulae for the generic rank \({\mathrm{rk}}\beta\) of \(\beta\), namely the maximal value of the rank of the derivative \(d\beta(\tilde{s})\) when \(\tilde{s}\) runs through \(\tilde{S}\). The authors determine this rank in relative dimension \(\le 3\) and investigate in detail the case of jacobians of families of hyperelliptic curves, both in the real and complex case. The main application is obtained in collaboration with Z. Gao. Let \(A \to S\) be a principally polarized abelian scheme of relative dimension \(g\) which has no non-trivial endomorphism (on any finite covering). Assume that the image of \(S\) in the moduli space \(A_g\) has dimension at least \(g\). Then the Betti map of any non-torsion section \(\xi\) is generically a submersion, so that \(\xi^{-1} A_{\mathrm {tors}}\) is dense in \(S({\mathbb C})\). The proof involves an application of the pure Ax-Schanuel theorem written by Z. Gao in an Appendix to the paper under review (see [N. Mok et al., Ann. Math. (2) 189, No. 3, 945–978 (2019; Zbl 1481.14048)]).

MSC:

11G10 Abelian varieties of dimension \(> 1\)
14K10 Algebraic moduli of abelian varieties, classification
11J89 Transcendence theory of elliptic and abelian functions
14M99 Special varieties

Citations:

Zbl 1481.14048

References:

[1] A’Campo, N., Tresses, monodromie et le groupe symplectique, Comment. Math. Helv., 54, 2, 318-327 (1979) · Zbl 0441.32004 · doi:10.1007/BF02566275
[2] André, Y., Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compos. Math., 82, 1-24 (1992) · Zbl 0770.14003
[3] André, Y.: Groupes de Galois motiviques et périodes, Séminaire Bourbaki, Novembre 2015 68ème année, 2015-2016. S. F. M. Astérisque
[4] André, Y., On the Kodaira-Spencer map of abelian schemes, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XVII, 1397-1416 (2017) · Zbl 1388.14133
[5] Bertrand, D.: Manin’s Theorem of the Kernel: A Remark on a Paper of C-L. Chai. http://webusers.imj-prg.fr/ daniel.bertrand/Recherche/rpdf/Manin_Chai.pdf. Accessed 20 Feb 2017
[6] Borovoi, M.: The Hodge Group and Endomorphism Algebra of an Abelian Variety, Problems in Group Theory and Homological Algebra, Yaroslav, pp. 124-126 (1981) (English version on the author’s webpage) · Zbl 0494.14017
[7] Beukers, F.; Brownawell, W.; Heckman, G., Siegel normality, Ann. Math., 127, 2, 279-308 (1988) · Zbl 0652.10027 · doi:10.2307/2007054
[8] Corvaja, P.; Masser, D.; Zannier, U., Torsion hypersurfaces on Abelian schemes and Betti coordinates, Math. Ann., 371, 1013-1045 (2018) · Zbl 1412.14029 · doi:10.1007/s00208-017-1537-z
[9] Deligne, P., Théorie de Hodge III, Publ. Math. I.H.E.S., 44, 5-77 (1974) · Zbl 0237.14003 · doi:10.1007/BF02685881
[10] Deligne, P.: Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. 247-289. In: Automorphic Forms, Representations and L-Functions (Corvallis 1977), Part 2, Proceedings of Symposia Pure Mathematics. XXXIII. AMS, Providence, RI (1979) · Zbl 0437.14012
[11] Gao, Z., Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann-Weierstrass theorem and lower bounds for Galois orbits of special points, J. Reine Angew. Math. (Crelle), 2017, 732, 85-146 (2017) · Zbl 1422.11140 · doi:10.1515/crelle-2014-0127
[12] Gao, Z.; Habegger, P., Heights in families of Abelian varieties and the geometric Bogomolov conjecture, Ann. Math., 189, 527-604 (2019) · Zbl 1432.11060 · doi:10.4007/annals.2019.189.2.3
[13] Gao, Z.: Generic rank of the Betti map and Unlikely Intersections. Preprint (2018). arXiv:1810.12929
[14] Griffiths, Ph; Harris, J., A Poncelet theorem in space, Comment. Math. Helv., 52, 145-160 (1977) · Zbl 0358.50009 · doi:10.1007/BF02567361
[15] Gross, B.; Harris, J., Real algebraic curves, Ann. Sci. E. N. S., 14, 157-182 (1981) · Zbl 0533.14011
[16] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics (2001), Providence: AMS, Providence · Zbl 0993.53002
[17] Hitchin, N., Poncelet Polygons and the Painlevé Equations, Geometry and Analysis (Bombay, 1992), 151-185 (1995), Bombay: Tata Institute of Fundamental Research, Bombay · Zbl 0893.32018
[18] Katz, N., Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18, 1-118 (1972) · Zbl 0278.14004 · doi:10.1007/BF01389714
[19] Krichever, I., Nonlinear equations and elliptic curves, J. Sov. Math., 28, 51-90 (1985) · Zbl 0595.35087 · doi:10.1007/BF02104896
[20] Lawrence, B.: A Density Result for Real Hyperelliptic Curves. Note C.R.A.S, Paris (2016)
[21] Lovász, L., Singular spaces of matrices and their application in combinatorics, Bol. Soc. Braz. Mat., 20, 87-99 (1989) · Zbl 0757.05035 · doi:10.1007/BF02585470
[22] Manin, Yu, Rational points of algebraic curves over function fields, Izv. Akad. Nauk SSSR, 27, 1395-1440 (1963) · Zbl 0166.16901
[23] Mok, N., Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, Pure Mathematics (1989), Singapore: World Scientific, Singapore · Zbl 0912.32026
[24] Mok, N.; Pila, J.; Tsimerman, J., Ax-Schanuel for Shimura varieties, Ann. Math., 189, 945-978 (2019) · Zbl 1481.14048 · doi:10.4007/annals.2019.189.3.7
[25] Moonen, B., Linearity properties of Shimura varieties. I, J. Algebraic Geom., 7, 3, 539-567 (1988) · Zbl 0956.14016
[26] Mori, S., The endomorphism rings of some abelian varieties, Jpn. J. Math., 2, 1, 109-130 (1976) · Zbl 0339.14016 · doi:10.4099/math1924.2.109
[27] Mustafin, G.: Families of algebraic varieties and invariant cycles, Izv Akad Nauk SSSR 49 (1985). Math USSR Izvestia 27, (1986) · Zbl 0633.14012
[28] Ottaviani, G.; Peeva, I., An introduction to the hyperdeterminant and to the rank of multidimensional matrices, Commutative Algebra, Dedicated to D. Eisenbud, 609-638 (2013), Berlin: Springer, Berlin · Zbl 1276.14078
[29] Pink, R.; Bogomolov, F.; Tschinkel, Y., A Combination of the Conjectures of Mordell-Lang and André-Oort, Geometric Methods in Algebra and Number Theory. Progress in Mathematics, 251-282 (2005), Basel: Birkhäuser, Basel · Zbl 1200.11041
[30] Pink, R.: A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang (2005). https://people.math.ethz.ch/ pink/ftp/AOMMML.pdf. Accessed 20 Feb 2017
[31] Robinson, R., Conjugate algebraic integers in real point sets, Math. Z., 84, 415-427 (1964) · Zbl 0126.02902 · doi:10.1007/BF01109909
[32] Serre, J-P, Algèbre Locale, Multiplicités, LNM 11 (1965), Berlin: Springer, Berlin
[33] Serre, J.-P.: Distribution asymptotique des valeurs propres des endomorphismes de Frobenius (d’après Abel, Chebychev, Robinson...), Séminarie Bourbaki, Mars (2018)
[34] Ullmo, E.; Yafaev, A., A characterisation of special subvarieties, Mathematika, 57, 2, 263-273 (2011) · Zbl 1236.14029 · doi:10.1112/S0025579311001628
[35] Voisin, C.: Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-Kähler fourfolds. In: Geometry of Moduli, Abel Symposium, vol. 14, Springer, Berlin (2018) · Zbl 1420.14082
[36] Wildeshaus, J.; Wildeshaus, J., The canonical construction of mixed sheaves on mixed Shimura varieties, Realizations of Polylogarithms, 77-140 (1997), Berlin: Springer, Berlin · Zbl 0877.11001
[37] Zannier, U., Some Problems of Unlikely Intersections in Arithmetic and Geometry, Annals of Mathematics Studies (2012), Princeton: Princeton University Press, Princeton · Zbl 1246.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.