×

Strict matching matroids and matroid algorithms. (English) Zbl 0606.05017

Author’s abstract: ”A simple characterization of the set MCOLOOP of coloops in the strict matching matroid of an undirected graph \(G=(V,E)\) is provided, which allows the Edmonds decomposition of G to be produced in \(O(| V|^{5/2})\). Based on this decomposition, we have the following results: Two graphs associated with G are produced in \(O(| V| +| E|)\). One is a bipartite graph with at most \(3| E|\) edges, whose transversal matroid is isomorphic to the strict matching matroid of G; the other is a directed graph with at most \(| E|\) edges, representing the strict gammoid dual to the strict matching matroid. The matroid components of the strict matching matroid of G are produced in \(O(| V| +\delta k(G)(k(G)-\delta))\), where \(\delta\) is the matching defect of G and k(G) is the number of components of G(V-MCOLOOP). We show how to list the bases of the strict matching matroid of G, and also calculate its Whitney and Tutte polynomials, in \(O(N\delta [(| V| -\delta)^ 2+| E|])\), where N is the number of bases in the matroid.”

MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
Full Text: DOI

References:

[1] Aharoni R., J. Combinatorial Theory 37 pp 199– (1984) · Zbl 0552.05044 · doi:10.1016/0095-8956(84)90052-2
[2] Berge C., Proc. Nail Acad. Set. U.S. 43 pp 812– (1957)
[3] Brualdi R. A., Studies in Graph Theory pp 23– (1975)
[4] DOI: 10.1007/BF02579231 · Zbl 0518.05051 · doi:10.1007/BF02579231
[5] DOI: 10.1093/qmath/33.3.297 · Zbl 0498.05020 · doi:10.1093/qmath/33.3.297
[6] DOI: 10.4153/CJM-1965-045-4 · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[7] Edmonds J., J. Res. Nat. Bur. Standards(B) 69 pp 147– (1965)
[8] Even S., Conf. Record, IEEE 16th Annual Symp. on Foundations of Computer Science pp 100– (1975)
[9] DOI: 10.1145/321941.321942 · Zbl 0327.05121 · doi:10.1145/321941.321942
[10] Gallai T., Mai Kur Im Kozl. 9 pp 373– (1964)
[11] DOI: 10.1016/0095-8956(73)90031-2 · Zbl 0264.05021 · doi:10.1016/0095-8956(73)90031-2
[12] DOI: 10.1016/0012-365X(77)90118-2 · Zbl 0366.05024 · doi:10.1016/0012-365X(77)90118-2
[13] Combinatorial optimization: Networks and Matroids (1976) · Zbl 0413.90040
[14] DOI: 10.1093/qmath/30.2.191 · Zbl 0411.05030 · doi:10.1093/qmath/30.2.191
[15] DOI: 10.1016/0012-365X(75)90006-0 · Zbl 0299.05115 · doi:10.1016/0012-365X(75)90006-0
[16] Mummy M. S., The generalized column incidence graph and a matroid base-listing algorithm · Zbl 0606.05015 · doi:10.1080/03081088608817702
[17] Mummy M. S., strict gammoids, and the matroid components problem · Zbl 0606.05016
[18] Matroid Theory (1976) · Zbl 0343.05002
[19] Williamson S. G., Combinatories for Computer science (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.