×

Extended solutions for the biadjoint scalar field. (English) Zbl 1380.81227

Summary: Biadjoint scalar field theories are increasingly important in the study of scattering amplitudes in various string and field theories. Recently, some first exact nonperturbative solutions of biadjoint scalar theory were presented, with a pure power-like form corresponding to isolated monopole-like objects located at the origin of space. In this paper, we find a novel family of extended solutions, involving non-trivial form factors that partially screen the divergent field at the origin. All previous solutions emerge as special cases.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Bjerrum-Bohr, N.; Damgaard, P. H.; Monteiro, R.; O’Connell, D., Algebras for amplitudes, J. High Energy Phys., 1206, Article 061 pp. (2012) · Zbl 1397.81135
[2] Mafra, C. R., Berends-Giele recursion for double-color-ordered amplitudes, J. High Energy Phys., 07, Article 080 pp. (2016) · Zbl 1390.81336
[3] Bern, Z.; Carrasco, J.; Johansson, H., New relations for gauge-theory amplitudes, Phys. Rev. D, 78, Article 085011 pp. (2008)
[4] Bern, Z.; Carrasco, J. J.M.; Johansson, H., Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett., 105, Article 061602 pp. (2010)
[5] Bern, Z.; Dennen, T.; Huang, Y.-t.; Kiermaier, M., Gravity as the square of gauge theory, Phys. Rev. D, 82, Article 065003 pp. (2010)
[6] Monteiro, R.; O’Connell, D.; White, C. D., Black holes and the double copy, J. High Energy Phys., 1412, Article 056 pp. (2014) · Zbl 1333.83048
[7] Luna, A.; Monteiro, R.; O’Connell, D.; White, C. D., The classical double copy for Taub-NUT spacetime, Phys. Lett. B, 750, 272-277 (2015) · Zbl 1364.83005
[8] Luna, A.; Monteiro, R.; Nicholson, I.; O’Connell, D.; White, C. D., The double copy: Bremsstrahlung and accelerating black holes · Zbl 1388.83025
[9] Ridgway, A. K.; Wise, M. B., Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy
[10] Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, L. J.; Nagy, S., Yang-Mills origin of gravitational symmetries, Phys. Rev. Lett., 113, 23, Article 231606 pp. (2014) · Zbl 1333.81225
[11] Borsten, L.; Duff, M. J., Gravity as the square of Yang-Mills?, Phys. Scr., 90, Article 108012 pp. (2015)
[12] Anastasiou, A.; Borsten, L.; Duff, M. J.; Hughes, M. J.; Marrani, A.; Nagy, S.; Zoccali, M., Twin supergravities from Yang-Mills theory squared, Phys. Rev. D, 96, 2, Article 026013 pp. (2017)
[13] Anastasiou, A.; Borsten, L.; Duff, M. J.; Marrani, A.; Nagy, S.; Zoccali, M., Are all supergravity theories Yang-Mills squared? · Zbl 1395.83116
[14] Goldberger, W. D.; Ridgway, A. K., Radiation and the classical double copy for color charges, Phys. Rev. D, 95, 12, Article 125010 pp. (2017)
[15] Goldberger, W. D.; Prabhu, S. G.; Thompson, J. O., Classical gluon and graviton radiation from the bi-adjoint scalar double copy
[16] Luna, A.; Monteiro, R.; Nicholson, I.; Ochirov, A.; O’Connell, D.; Westerberg, N.; White, C. D., Perturbative spacetimes from Yang-Mills theory, J. High Energy Phys., 04, Article 069 pp. (2017) · Zbl 1378.83012
[17] Adamo, T.; Casali, E.; Mason, L.; Nekovar, S., Scattering on plane waves and the double copy · Zbl 1382.83035
[18] Cachazo, F.; He, S.; Yuan, E. Y., Scattering of massless particles: scalars, gluons and gravitons · Zbl 1391.81198
[19] Cachazo, F.; He, S.; Yuan, E. Y., Scattering of massless particles in arbitrary dimension
[20] Cachazo, F.; He, S.; Yuan, E. Y., Scattering equations and KLT orthogonality
[21] Cachazo, F.; He, S.; Yuan, E. Y., Scattering in three dimensions from rational maps, J. High Energy Phys., 1310, Article 141 pp. (2013)
[22] Mason, L.; Skinner, D., Ambitwistor strings and the scattering equations, J. High Energy Phys., 1407, Article 048 pp. (2014)
[23] Geyer, Y.; Lipstein, A. E.; Mason, L. J., Ambitwistor strings in 4-dimensions, Phys. Rev. Lett., 113, Article 081602 pp. (2014)
[24] Casali, E.; Geyer, Y.; Mason, L.; Monteiro, R.; Roehrig, K. A., New ambitwistor string theories, J. High Energy Phys., 11, Article 038 pp. (2015) · Zbl 1388.81502
[25] Geyer, Y.; Mason, L.; Monteiro, R.; Tourkine, P., Loop integrands for scattering amplitudes from the Riemann sphere, Phys. Rev. Lett., 115, 12, Article 121603 pp. (2015)
[26] Geyer, Y.; Mason, L.; Monteiro, R.; Tourkine, P., One-loop amplitudes on the Riemann sphere, J. High Energy Phys., 03, Article 114 pp. (2016) · Zbl 1388.81906
[27] Geyer, Y.; Mason, L.; Monteiro, R.; Tourkine, P., Two-loop scattering amplitudes from the Riemann sphere, Phys. Rev. D, 94, 12, Article 125029 pp. (2016)
[28] Casali, E.; Tourkine, P., On the null origin of the ambitwistor string, J. High Energy Phys., 11, Article 036 pp. (2016) · Zbl 1390.81493
[29] Gomez, H.; Lopez-Arcos, C.; Talavera, P., One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations · Zbl 1383.83173
[30] Chiodaroli, M., Simplifying amplitudes in Maxwell-Einstein and Yang-Mills-Einstein supergravities (2016) · Zbl 1417.83019
[31] de la Cruz, L.; Kniss, A.; Weinzierl, S., Relations for Einstein-Yang-Mills amplitudes from the CHY representation, Phys. Lett. B, 767, 86-90 (2017) · Zbl 1404.70070
[32] Cardoso, G. L.; Nagy, S.; Nampuri, S., A double copy for \(N = 2\) supergravity: a linearised tale told on-shell, J. High Energy Phys., 10, Article 127 pp. (2016) · Zbl 1390.83383
[33] Mafra, C. R.; Schlotterer, O., Non-abelian \(Z\)-theory: Berends-Giele recursion for the \(\alpha^\prime \)-expansion of disk integrals, J. High Energy Phys., 01, Article 031 pp. (2017) · Zbl 1373.83110
[34] Carrasco, J. J.M.; Mafra, C. R.; Schlotterer, O., Abelian Z-theory: NLSM amplitudes and \(\alpha^\prime \)-corrections from the open string, J. High Energy Phys., 06, Article 093 pp. (2017) · Zbl 1380.83251
[35] Mizera, S., Inverse of the string theory KLT kernel, J. High Energy Phys., 06, Article 084 pp. (2017) · Zbl 1380.81424
[36] Campiglia, M.; Coito, L.; Mizera, S., Can scalars have asymptotic symmetries?
[37] Johansson, H.; Nohle, J., Conformal gravity from gauge theory
[38] White, C. D., Exact solutions for the biadjoint scalar field, Phys. Lett. B, 763, 365-369 (2016) · Zbl 1370.70053
[39] Prasad, M. K.; Sommerfield, C. M., An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett., 35, 760-762 (1975)
[40] Bogomolny, E. B., Stability of classical solutions, Sov. J. Nucl. Phys.. Sov. J. Nucl. Phys., Yad. Fiz., 24, 861 (1976)
[41] Julia, B.; Zee, A., Poles with both magnetic and electric charges in nonabelian gauge theory, Phys. Rev. D, 11, 2227-2232 (1975)
[42] ’t Hooft, G., Magnetic monopoles in unified gauge theories, Nucl. Phys. B, 79, 276-284 (1974)
[43] Polyakov, A. M., Isomeric states of quantum fields, Zh. Eksp. Teor. Fiz., 68, 1975 (1975)
[44] Wu, T. T.; Yang, C.-N., Some solutions of the classical isotopic gauge field equations, (Properties of Matter Under Unusual Conditions (1967))
[45] Derrick, G. H., Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5, 1252-1254 (1964)
[46] Zaitsev, V.; Polyanin, A., Handbook of Exact Solutions for Ordinary Differential Equations (2002), CRC Press · Zbl 1031.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.