×

Spatial basis functions based fault localisation for linear parabolic distributed parameter systems. (English) Zbl 1542.93185

Summary: Fault localisation for distributed parameter systems is as important as fault detection but is seldom discussed in the literature. The main reason is that an infinite number of sensors in the space are needed to construct a distributed residual signal, which is nearly impossible in practice. In this study, a fault detection and localisation filter which only uses a finite number of sensors is initiated based on an approximated ordinary differential equation model. Considering the limitations on computation resources for higher-order models in practice, a novel set of spatial basis functions is applied to the reduced-order fault detection and localisation filter design. Under certain conditions, the novel spatial basis functions obtain smaller state truncation error while the order is lower compared to the mostly used eigenfunctions of the spatial operator.
© 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology

MSC:

93C20 Control/observation systems governed by partial differential equations
35K99 Parabolic equations and parabolic systems
93C05 Linear systems in control theory
93B11 System structure simplification
Full Text: DOI

References:

[1] ArmaouA., DemetriouM.A.: ‘Robust detection and accommodation of incipient component and actuator faults in nonlinear distributed processes’, AIChE J., 2008, 54, (10), pp. 2651-2662
[2] HeW., GeS.S.: ‘Robust adaptive boundary control of a vibrating string under unknown time‐varying disturbance’, IEEE Trans. Control Syst. Technol., 2011, 20, (1), pp. 48-58
[3] WangJ.‐W., LiuY.‐Q., SunC.‐Y.: ‘Adaptive neural boundary control design for nonlinear flexible distributed parameter systems’, IEEE Trans. Control Syst. Technol., 2018, 27, (5), pp. 2085-2099
[4] LiuY.‐Q., WangJ.‐W., SunC.‐Y.: ‘Observer‐based output feedback compensator design for linear parabolic PDEs with local piecewise control and pointwise observation in space’, IET Control Theory Applic., 2018, 12, (13), pp. 1812-1821
[5] ZhangJ., CuiB.: ‘Mobile observation for distributed parameter system with moving boundary over mobile sensor networks’, J. Control Decis., 2019, pp. 1-18
[6] WangJ.‐W., LiuY.‐Q., SunC.‐Y.: ‘Observer‐based dynamic local piecewise control of a linear parabolic PDE using non‐collocated local piecewise observation’, IET Control Theory Applic., 2018, 12, (3), pp. 346-358
[7] BaoL., HuangP., FeiS.: ‘Exponential stability and \(\mathcal{L}_2\) gain analysis of switched distributed parameter systems with time delay’, J. Control Decis., 2020, pp. 1-15
[8] FengY., LiH.‐X.: ‘Dynamic spatial independent component analysis based abnormality localization for distributed parameter systems’, IEEE Trans. Ind. Inf., 2020, 16, (5), pp. 2929-2936
[9] El‐FarraN.H., GhantasalaS.: ‘Actuator fault isolation and reconfiguration in transport‐reaction processes’, AIChE J., 2007, 53, (6), pp. 1518-1537
[10] FengY., LiH.‐X.: ‘Detection and spatial identification of fault for parabolic distributed parameter systems’, IEEE Trans. Ind. Electron., 2018, 66, (9), pp. 7300-7309
[11] DeyS., PerezH.E., MouraS.J.: ‘Model‐based battery thermal fault diagnostics: algorithms, analysis, and experiments’, IEEE Trans. Control Syst. Technol., 2017, 27, (2), pp. 576-587
[12] DeyS., PerezH.E., MouraS.J.: ‘Robust fault detection of a class of uncertain linear parabolic PDEs’, Automatica, 2019, 107, pp. 502-510 · Zbl 1429.93072
[13] LiuZ., LiuJ., HeW.: ‘Robust adaptive fault tolerant control for a linear cascaded ODE‐beam system’, Automatica, 2018, 98, pp. 42-50 · Zbl 1406.93094
[14] DingS.X.: ‘Model‐based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer‐Verlag, London, 2013, 2nd edn.) · Zbl 1293.93003
[15] ZhuJ.‐W., YangG.‐H., WangH.et al.: ‘Fault estimation for a class of nonlinear systems based on intermediate estimator’, IEEE Trans. Autom. Control, 2015, 61, (9), pp. 2518-2524 · Zbl 1359.93075
[16] ZhuJ.‐W., GuC.‐Y., DingS.et al.: ‘A new observer based cooperative fault‐tolerant tracking control method with application to networked multi‐axis motion control system’, IEEE Trans. Ind. Electron., 2020
[17] DingS.X.: ‘Data‐driven design of fault diagnosis and fault‐tolerant control systems’ (Springer, London, U.K., 2014)
[18] CaiJ., FerdowsiH., SarangapaniJ.: ‘Model‐based fault detection, estimation, and prediction for a class of linear distributed parameter systems’, Automatica, 2016, 66, pp. 122-131 · Zbl 1335.93030
[19] El‐FarraN.H.: ‘Integrated fault detection and fault‐tolerant control architectures for distributed processes’, Ind. Eng. Chem. Res., 2006, 45, (25), pp. 8338-8351
[20] FengY., LiH.‐X., YangH.‐D.: ‘Abnormal source identification for parabolic distributed parameter systems’, IEEE Trans. Syst. Man Cybern., Syst., 2019
[21] GhantasalaS., El‐FarraN.H.: ‘Robust actuator fault isolation and management in constrained uncertain parabolic PDE systems’, Automatica, 2009, 45, (10), pp. 2368-2373 · Zbl 1179.93103
[22] DeutscherJ.: ‘Fault detection for linear distributed‐parameter systems using finite‐dimensional functional observers’, Int. J. Control, 2016, 89, (3), pp. 550-563 · Zbl 1332.93141
[23] ChristofidesP.D. (2001). ‘Nonlinear and robust control of PDE systems: Methods and applications to transport‐reaction processes’. New York: Birkhaeuser Boston · Zbl 1018.93001
[24] DeutscherJ., HarkortC.: ‘A parametric approach to finite‐dimensional control of linear distributed‐parameter systems’, Int. J. Control, 2010, 83, (8), pp. 1674-1685 · Zbl 1200.93058
[25] FischerF., DeutscherJ.: ‘Algebraic fault detection and isolation for parabolic distributed‐parameter systems using modulation functions’, IFAC‐PapersOnLine, 2016, 49, (8), pp. 162-167
[26] FischerF., DeutscherJ.: ‘Fault detection for parabolic systems with distributed inputs and outputs using the modulation function approach’, IFAC‐PapersOnLine, 2017, 50, (1), pp. 6774-6779
[27] FischerF., DeutscherJ.: ‘Modulating function based fault detection for parabolic systems with polynomial faults’, IFAC‐PapersOnLine, 2018, 51, (24), pp. 359-366
[28] FischerF., DeutscherJ.: ‘Flatness‐based algebraic fault diagnosis for distributed‐parameter systems’, Automatica, 2020, 117, p. 108987. Available at http://www.sciencedirect.com/science/article/pii/S0005109820301850 · Zbl 1441.93120
[29] LiL., DingS.X., PengK.et al.: ‘Fuzzy fault detection filter design for nonlinear distributed parameter systems’, IEEE Access, 2019, 7, pp. 11105-11113
[30] DengH., LiH.‐X., ChenG.: ‘Spectral‐approximation‐based intelligent modeling for distributed thermal processes’, IEEE Trans. Control Syst. Technol., 2005, 13, (5), pp. 686-700
[31] DengH., JiangM., HuangC.‐Q.: ‘New spatial basis functions for the model reduction of nonlinear distributed parameter systems’, J. Process Control, 2012, 22, (2), pp. 404-411
[32] LaubA., HeathM., PaigeC.et al.: ‘Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms’, IEEE Trans. Autom. Control, 1987, 32, (2), pp. 115-122 · Zbl 0624.93025
[33] IoannouP.A., SunJ.: ‘Robust adaptive control’ (Courier Corporation, NY, USA, 2012)
[34] KrsticM., SmyshlyaevA.: ‘Boundary control of PDEs: a course on backstepping designs’ vol. 16’ (SIAM, Philadelphia, PA, USA, 2008) · Zbl 1149.93004
[35] WangJ.‐W., WangJ.‐M.: ‘Mixed \(\mathcal{H}_2 / \mathcal{H}_{\operatorname{\infty}}\) sampled‐data output feedback control design for a semi‐linear parabolic PDE in the sense of spatial \(\mathcal{L}^{\operatorname{\infty}}\) norm’, Automatica, 2019, 103, pp. 282-293 · Zbl 1415.93168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.