×

Permeability estimation of a porous structure in cancer treatment based on sampled velocity measurement. (English) Zbl 1487.35371

Summary: The problem of parameter identification appears in many physical applications. A parameter of particular interest in cancer treatment is permeability, which modulates the fluidic streamlines in the tumor microenvironment. Most of the existing permeability identification techniques are invasive and not feasible to identify the permeability with minimal interference with the porous structure in their working conditions. In this paper, a theoretical framework utilizing partial differential equation (PDE)-constrained optimization strategies is established to identify a spatially distributed permeability of a porous structure from its modulated external velocity field measured around the structure. In particular, the flow around and through the porous media are governed by the steady-state Navier-Stokes-Darcy model. The performance of our approach is validated via numerical and experimental tests for the permeability of a 3D printed porous surrogate in a micro-fluidic chip based on the sampled optical velocity measurement. Both numerical and experimental results show a high precision of the permeability estimation.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
76S05 Flows in porous media; filtration; seepage
76D05 Navier-Stokes equations for incompressible viscous fluids
92C37 Cell biology
92C50 Medical applications (general)
49M41 PDE constrained optimization (numerical aspects)
93B30 System identification
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] Abergel, F.; Temam, R., On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1, 303-325 (1990) · Zbl 0708.76106 · doi:10.1007/bf00271794
[2] Adrian, R. J., Twenty years of particle image velocimetry, Exp. Fluids, 39, 159-169 (2005) · doi:10.1007/s00348-005-0991-7
[3] Alhammadi, A. M.; Gao, Y.; Akai, T.; Blunt, M. J.; Bijeljic, B., Pore-scale x-ray imaging with measurement of relative permeability, capillary pressure and oil recovery in a mixed-wet micro-porous carbonate reservoir rock, Fuel, 268 (2020) · doi:10.1016/j.fuel.2020.117018
[4] Azzam, M. I S.; Dullien, F. A L., Calculation of the permeability of porous media from the Navier-Stokes equation, Ind. Eng. Chem. Fund., 15, 281-285 (1976) · doi:10.1021/i160060a010
[5] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228, 7986-8014 (2009) · Zbl 1391.74234 · doi:10.1016/j.jcp.2009.07.019
[6] Banks, H. T.; Kunisch, K., Estimation Techniques for Distributed Parameter Systems (2012), Boston: Birkhauser, Boston · Zbl 0695.93020
[7] Baychev, T. G.; Jivkov, A. P.; Rabbani, A.; Raeini, A. Q.; Xiong, Q.; Lowe, T.; Withers, P. J., Reliability of algorithms interpreting topological and geometric properties of porous media for pore network modelling, Transp. Porous Media, 128, 271-301 (2019) · doi:10.1007/s11242-019-01244-8
[8] Bear, J., Dynamics of Fluids in Porous Media (2013), New York: Dover, New York
[9] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207 (1967) · doi:10.1017/s0022112067001375
[10] Berdichevsky, A. L.; Cai, Z., Preform permeability predictions by self-consistent method and finite element simulation, Polym. Compos., 14, 132-143 (1993) · doi:10.1002/pc.750140207
[11] Berg, C. F., Permeability description by characteristic length, tortuosity, constriction and porosity, Transp. Porous Media, 103, 381-400 (2014) · doi:10.1007/s11242-014-0307-6
[12] Borcea, L., Electrical impedance tomography, Inverse Problems, 18, R99 (2002) · Zbl 1031.35147 · doi:10.1088/0266-5611/18/6/201
[13] Conca, C.; Murat, F.; Pironneau, O., The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan. J. Math., 20, 279-318 (1994) · Zbl 0826.35093 · doi:10.4099/math1924.20.279
[14] Dauge, M., Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I. Linearized equations, SIAM J. Math. Anal., 20, 74-97 (1989) · Zbl 0681.35071 · doi:10.1137/0520006
[15] Dias, M. R.; Fernandes, P. R.; Guedes, J. M.; Hollister, S. J., Permeability analysis of scaffolds for bone tissue engineering, J. Biomech., 45, 938-944 (2012) · doi:10.1016/j.jbiomech.2012.01.019
[16] Emblem, K. E.; Farrar, C. T.; Gerstner, E. R.; Batchelor, T. T.; Borra, R. J H.; Rosen, B. R.; Sorensen, A. G.; Jain, R. K., Vessel calibre-a potential MRI biomarker of tumour response in clinical trials, Nat. Rev. Clin. Oncol., 11, 566 (2014) · doi:10.1038/nrclinonc.2014.126
[17] Fairweather, J. D.; Cheung, P.; St-Pierre, J.; Schwartz, D. T., A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers, Electrochem. Commun., 9, 2340-2345 (2007) · doi:10.1016/j.elecom.2007.06.042
[18] Galindo-Rosales, F. J.; Campo-Deaño, L.; Pinho, F. T.; Van Bokhorst, E.; Hamersma, P. J.; Oliveira, M. S N.; Alves, M. A., Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media, Microfluid. Nanofluid., 12, 485-498 (2012) · doi:10.1007/s10404-011-0890-6
[19] Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J., X‐ray microtomography of intermittency in multiphase flow at steady state using a differential imaging method, Water Resour. Res., 53, 10274-10292 (2017) · doi:10.1002/2017wr021736
[20] Girault, V.; Raviart, P-A, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol 5 (2012), Berlin: Springer, Berlin
[21] Glowinski, R.; Pironneau, O., Finite element methods for Navier-Stokes equations, Annu. Rev. Fluid Mech., 24, 167-204 (1992) · Zbl 0743.76051 · doi:10.1146/annurev.fl.24.010192.001123
[22] Guan, K. M.; Nazarova, M.; Guo, B.; Tchelepi, H.; Kovscek, A. R.; Creux, P., Effects of image resolution on sandstone porosity and permeability as obtained from x-ray microscopy, Transp. Porous Media, 127, 233-245 (2019) · doi:10.1007/s11242-018-1189-9
[23] Hasanov, A.; Baysal, O., Identification of unknown temporal and spatial load distributions in a vibrating Euler-Bernoulli beam from Dirichlet boundary measured data, Automatica, 71, 106-117 (2016) · Zbl 1343.93026 · doi:10.1016/j.automatica.2016.04.034
[24] Hinze, M.; Kaltenbacher, B.; Quyen, T. N T., Identifying conductivity in electrical impedance tomography with total variation regularization, Numer. Math., 138, 723-765 (2018) · Zbl 1397.65238 · doi:10.1007/s00211-017-0920-8
[25] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints, vol 23 (2008), Netherlands: Springer, Netherlands · Zbl 1167.49001
[26] Jain, R. K., Barriers to drug delivery in solid tumors, Sci. Am., 271, 58-65 (1994) · doi:10.1038/scientificamerican0794-58
[27] Jang, S. H.; Wientjes, M. G.; Lu, D.; Au, J. L S., Drug delivery and transport to solid tumors, Pharm. Res., 20, 1337-1350 (2003) · doi:10.1023/a:1025785505977
[28] Jivkov, A. P.; Hollis, C.; Etiese, F.; McDonald, S. A.; Withers, P. J., A novel architecture for pore network modelling with applications to permeability of porous media, J. Hydrol., 486, 246-258 (2013) · doi:10.1016/j.jhydrol.2013.01.045
[29] Jouini, M. S.; AlSumaiti, A.; Tembely, M.; Hjouj, F.; Rahimov, K., Permeability upscaling in complex carbonate samples using textures of micro-computed tomography images, Int. J. Modelling Simul., 40, 245-259 (2020) · doi:10.1080/02286203.2019.1596728
[30] Kamran, N. N.; Drakunov, S. V.; Solano, W. M., Nonlinear observer for distributed parameter systems described by decoupled advection equations, J. Vib. Control, 23, 1152-1165 (2017) · Zbl 1387.93087 · doi:10.1177/1077546315589876
[31] Kamrava, S.; Tahmasebi, P.; Sahimi, M., Linking morphology of porous media to their macroscopic permeability by deep learning, Transp. Porous Media, 131, 427-448 (2020) · doi:10.1007/s11242-019-01352-5
[32] Kawano, A., Uniqueness in the identification of asynchronous sources and damage in vibrating beams, Inverse Problems, 30 (2014) · Zbl 1296.35215 · doi:10.1088/0266-5611/30/6/065008
[33] Khawar, I. A.; Kim, J. H.; Kuh, H-J, Improving drug delivery to solid tumors: priming the tumor microenvironment, J. Control. Release, 201, 78-89 (2015) · doi:10.1016/j.jconrel.2014.12.018
[34] Kohn, R.; Vogelius, M., Determining conductivity by boundary measurements, Commun. Pure Appl. Math., 37, 289-298 (1984) · Zbl 0586.35089 · doi:10.1002/cpa.3160370302
[35] Kohn, R. V.; Vogelius, M., Determining conductivity by boundary measurements ii. interior results, Commun. Pure Appl. Math., 38, 643-667 (1985) · Zbl 0595.35092 · doi:10.1002/cpa.3160380513
[36] Kohn, R. V.; Vogelius, M., Relaxation of a variational method for impedance computed tomography, Commun. Pure Appl. Math., 40, 745-777 (1987) · Zbl 0659.49009 · doi:10.1002/cpa.3160400605
[37] Kubo, T.; Matsuda, N.; Kashiwaya, K.; Koike, K.; Ishibashi, M.; Tsuruta, T.; Matsuoka, T.; Sasao, E.; Lanyon, G. W., Characterizing the permeability of drillhole core samples of toki granite, central Japan to identify factors influencing rock-matrix permeability, Eng. Geol., 259 (2019) · doi:10.1016/j.enggeo.2019.105163
[38] Kunisch, K.; Peichl, G., Estimation of a temporally and spatially varying diffusion coefficient in a parabolic system by an augmented Lagrangian technique, Numer. Math., 59, 473-509 (1991) · Zbl 0742.65090 · doi:10.1007/bf01385792
[39] Landa-Marbán, D.; Liu, N.; Pop, I. S.; Kumar, K.; Pettersson, P.; Bødtker, G.; Skauge, T.; Radu, F. A., A pore-scale model for permeable biofilm: numerical simulations and laboratory experiments, Transp. Porous Media, 127, 643-660 (2019) · doi:10.1007/s11242-018-1218-8
[40] Lions, J. L., Optimal control of systems governed by partial differential equations problèmes aux limites (1971) · Zbl 0203.09001
[41] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications: Volume 1, vol 181 (2012), Berlin: Springer, Berlin · Zbl 0227.35001
[42] Mahammod, B. P.; Barua, E.; Deoghare, A. B.; Pandey, K. M., Permeability quantification of porous polymer scaffold for bone tissue engineering, Mater. Today, 22, 1687-1693 (2020) · doi:10.1016/j.matpr.2020.02.186
[43] Maz’ya, V.; Rossmann, J., Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains, Arch. Ration. Mech. Anal., 194, 669-712 (2009) · Zbl 1253.76019 · doi:10.1007/s00205-008-0171-z
[44] Mochi, M.; Pacelli, G.; Recchioni, M. C.; Zirilli, F., Inverse problem for a class of two-dimensional diffusion equations with piecewise constant coefficients, J. Optim. Theory Appl., 100, 29-57 (1999) · Zbl 0928.35190 · doi:10.1023/a:1021712830465
[45] Moura, S.; Bendtsen, J.; Ruiz, V., Parameter identification of aggregated thermostatically controlled loads for smart grids using PDE techniques, Int. J. Control, 87, 1373-1386 (2014) · Zbl 1317.93077 · doi:10.1080/00207179.2014.915083
[46] Mueller, J. L.; Siltanen, S., Linear and Nonlinear Inverse Problems with Practical Applications (2012), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1262.65124
[47] Nel, A.; Ruoslahti, E.; Meng, H., New insights into permeability as in the enhanced permeability and retention effect of cancer nanotherapeutics (2017)
[48] Nguyen, P. A.; Raymond, J-P, Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions, SIAM J. Control Optim., 53, 3006-3039 (2015) · Zbl 1327.93194 · doi:10.1137/13091364x
[49] Nguyen, V. T.; Georges, D.; Besançon, G., State and parameter estimation in 1-d hyperbolic pdes based on an adjoint method, Automatica, 67, 185-191 (2016) · Zbl 1335.93124 · doi:10.1016/j.automatica.2016.01.031
[50] Nocedal, J.; Wright, S., Numerical Optimization (2006), New York: Springer, New York · Zbl 1104.65059
[51] Okabe, H.; Blunt, M. J., Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E, 70 (2004) · doi:10.1103/physreve.70.066135
[52] Ooi, E. H.; Ooi, E. T., Mass transport in biological tissues: comparisons between single- and dual-porosity models in the context of saline-infused radiofrequency ablation, Appl. Math. Modelling, 41, 271-284 (2017) · Zbl 1443.76061 · doi:10.1016/j.apm.2016.08.029
[53] Ovaysi, S.; Piri, M., Direct pore-level modeling of incompressible fluid flow in porous media, J. Comput. Phys., 229, 7456-7476 (2010) · Zbl 1425.76250 · doi:10.1016/j.jcp.2010.06.028
[54] Pennella, F.; Cerino, G.; Massai, D.; Gallo, D.; Labate, G. F D.; Schiavi, A.; Deriu, M. A.; Audenino, A.; Morbiducci, U., A survey of methods for the evaluation of tissue engineering scaffold permeability, Ann. Biomed. Eng., 41, 2027-2041 (2013) · doi:10.1007/s10439-013-0815-5
[55] Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C W., Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett., 9, 1909-1915 (2009) · doi:10.1021/nl900031y
[56] Picchi, D.; Battiato, I., Relative permeability scaling from pore‐scale flow regimes, Water Resour. Res., 55, 3215-3233 (2019) · doi:10.1029/2018wr024251
[57] Prabhakar, U., Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology (2013)
[58] Premžoe, S.; Tasdizen, T.; Bigler, J.; Lefohn, A.; Whitaker, R. T., Particle-based simulation of fluids, Comput. Graph. Forum, 22, 401-410 (2003) · doi:10.1111/1467-8659.00687
[59] Rezaei Niya, S. M.; Selvadurai, A. P S., The estimation of permeability of a porous medium with a generalized pore structure by geometry identification, Phys. Fluids, 29 (2017) · doi:10.1063/1.4977444
[60] Santos, J.; Pires, T.; Gouveia, B. P.; Castro, A. P G.; Fernandes, P. R., On the permeability of TPMS scaffolds, J. Mech. Behav. Biomed. Mater., 110 (2020) · doi:10.1016/j.jmbbm.2020.103932
[61] Schiavi, A.; Guglielmone, C.; Pennella, F.; Morbiducci, U., Acoustic method for permeability measurement of tissue-engineering scaffold, Meas. Sci. Technol., 23 (2012) · doi:10.1088/0957-0233/23/10/105702
[62] Spall, J. C., Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol 65 (2005), New York: Wiley, New York
[63] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, vol 343 (2001), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0981.35001
[64] Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, vol 112 (2010), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1195.49001
[65] Truscello, S.; Kerckhofs, G.; Van Bael, S.; Pyka, G.; Schrooten, J.; Van Oosterwyck, H., Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study, Acta Biomater., 8, 1648-1658 (2012) · doi:10.1016/j.actbio.2011.12.021
[66] Uhlmann, G., Electrical impedance tomography and Calderón’s problem, Inverse Problems, 25 (2009) · Zbl 1181.35339 · doi:10.1088/0266-5611/25/12/123011
[67] Wang, C.; Pan, L.; Zhao, Y.; Zhang, Y.; Shen, W., Analysis of the pressure-pulse propagation in rock: a new approach to simultaneously determine permeability, porosity, and adsorption capacity, Rock Mech. Rock Eng., 52, 4301-4317 (2019) · doi:10.1007/s00603-019-01874-w
[68] Wang, Y. D.; Chung, T.; Armstrong, R. T.; McClure, J.; Ramstad, T.; Mostaghimi, P., Accelerated computation of relative permeability by coupled morphological and direct multiphase flow simulation, J. Comput. Phys., 401 (2020) · doi:10.1016/j.jcp.2019.108966
[69] Westerweel, J.; Elsinga, G. E.; Adrian, R. J., Particle image velocimetry for complex and turbulent flows, Annu. Rev. Fluid Mech., 45, 409-436 (2013) · Zbl 1359.76008 · doi:10.1146/annurev-fluid-120710-101204
[70] White, F. M., Fluid Mechanics (1999), New York: McGraw-Hill, New York
[71] Wu, M.; Xiao, F.; Johnson-Paben, R. M.; Retterer, S. T.; Yin, X.; Neeves, K. B., Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation, Lab Chip, 12, 253-261 (2012) · doi:10.1039/c1lc20838a
[72] Wu, Z.; Yin, J.; Wang, C., Elliptic & Parabolic Equations (2006), Singapore: World Scientific, Singapore · Zbl 1108.35001
[73] Xiong, Q.; Baychev, T. G.; Jivkov, A. P., Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport, J. Contam. Hydrol., 192, 101-117 (2016) · doi:10.1016/j.jconhyd.2016.07.002
[74] Yang, S.; Gao, H., Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy, Pharmacol. Res., 126, 97-108 (2017) · doi:10.1016/j.phrs.2017.05.004
[75] Yang, X-S; Zhou, B., A new numerical model for Stokes flow and permeability estimation, Discrete Element Methods: Numerical Modeling of Discontinua, 195-199 (2002)
[76] Yhee, J. Y., Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles, J. Control. Release, 267, 223-231 (2017) · doi:10.1016/j.jconrel.2017.09.015
[77] Yu, Q.; Dai, Z.; Zhang, Z.; Soltanian, M. R.; Yin, S., Estimation of sandstone permeability with SEM images based on fractal theory, Transp. Porous Media, 126, 701-712 (2019) · doi:10.1007/s11242-018-1167-2
[78] Zhang, P., Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration, J. Am. Chem. Soc., 140, 14980-14989 (2018) · doi:10.1021/jacs.8b09396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.