×

Battery internal temperature estimation via a semilinear thermal PDE model. (English) Zbl 1480.93203

Summary: Accurate lithium-ion (Li-ion) battery internal temperature information enables high-fidelity monitoring and safe operation in battery management systems, thus prevents thermal faults that could cause catastrophic failures. This paper proposes an online temperature estimation scheme for cylindrical Li-ion batteries based on a one-dimensional semilinear parabolic partial differential equation (PDE) model subject to in-domain and output uncertainties, using temperature measurements at the battery surface only. The thermal state observer design exploits PDE backstepping method, with a mild assumption on the Lipschitz continuity of the nonlinear heat generation rate. A sufficient condition on the Lipschitz constant to achieve exponential convergence is derived. Furthermore, when the thermal system uncertainties are present, an analytic bound on the temperature estimation error is formulated in the sense of spatial \(\mathcal{L}_2\) norm, in terms of Lipschitz constant, design parameters, and bounds on system uncertainties. Simulation studies on various practical current profiles are demonstrated to illustrate the effectiveness of the proposed thermal estimation framework on a commercial cylindrical Li-ion battery cell.

MSC:

93C20 Control/observation systems governed by partial differential equations
35K58 Semilinear parabolic equations
93B53 Observers
93C35 Multivariable systems, multidimensional control systems

References:

[1] Ahmed-Ali, Tarek; Giri, Fouad; Krstic, Miroslav; Burlion, Laurent; Lamnabhi-Lagarrigue, Françoise, Adaptive boundary observer for parabolic PDEs subject to domain and boundary parameter uncertainties, Automatica, 72, 115-122 (2016) · Zbl 1344.93021
[2] Al Hallaj, Said; Maleki, Hossein; Hong, Jong-Sung; Selman, J. Robert, Thermal modeling and design considerations of lithium-ion batteries, Journal of Power Sources, 83, 1-2, 1-8 (1999)
[3] Bernardi, D.; Pawlikowski, E.; Newman, John, A general energy balance for battery systems, Journal of The Electrochemical Society, 132, 1, 5-12 (1985)
[4] Broussely, Michel; Biensan, Ph; Bonhomme, F.; Blanchard, Ph; Herreyre, S.; Nechev, K., Main aging mechanisms in Li ion batteries, Journal of Power Sources, 146, 1-2, 90-96 (2005)
[5] Chaturvedi, Nalin A.; Klein, Reinhardt; Christensen, Jake; Ahmed, Jasim; Kojic, Aleksandar, Algorithms for advanced battery-management systems, IEEE Control Systems Magazine, 30, 3, 49-68 (2010)
[6] Chen, S. C.; Wan, C. C.; Wang, Y. Y., Thermal analysis of lithium-ion batteries, Journal of Power Sources, 140, 1, 111-124 (2005)
[7] Cheng, Meng-Bi; Radisavljevic, Verica; Su, Wu-Chung, Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties, Automatica, 47, 2, 381-387 (2011) · Zbl 1213.35239
[8] Couto, Luis D.; Zhang, Dong; Aitio, Antti; Moura, Scott; Howey, David, Estimation of parameter probability distributions for lithium-ion battery string models using Bayesian methods, (Dynamic systems and control conference, (Vol. 84270) (2020), American Society of Mechanical Engineers), V001T20A003
[9] Dey, Satadru; Ayalew, Beshah; Pisu, Pierluigi, Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model, IEEE Transactions on Control Systems Technology, 23, 5, 1935-1942 (2015)
[10] Dey, Satadru; Biron, Zoleikha Abdollahi; Tatipamula, Sagar; Das, Nabarun; Mohon, Sara; Ayalew, Beshah, Model-based real-time thermal fault diagnosis of lithium-ion batteries, Control Engineering Practice, 56, 37-48 (2016)
[11] Dey, S.; Perez, H. E.; Moura, S. J., Model-based battery thermal fault diagnostics: Algorithms, analysis, and experiments, IEEE Transactions on Control Systems Technology, 27, 2, 576-587 (2019)
[12] Doughty, Daniel H.; Butler, Paul C.; Jungst, Rudolph G.; Roth, E. Peter, Lithium battery thermal models, Journal of Power Sources, 110, 2, 357-363 (2002)
[13] Du, Ronghua; Hu, Xiaosong; Xie, Shaobo; Hu, Lin; Zhang, Zhiyong; Lin, Xianke, Battery aging-and temperature-aware predictive energy management for hybrid electric vehicles, Journal of Power Sources, 473, Article 228568 pp. (2020)
[14] Evans, T. I.; White, Ralph E., A thermal analysis of a spirally wound battery using a simple mathematical model, Journal of The Electrochemical Society, 136, 8, 2145 (1989)
[15] Forgez, Christophe; Do, Dinh Vinh; Friedrich, Guy; Morcrette, Mathieu; Delacourt, Charles, Thermal modeling of a cylindrical LiFePO \({}_4\)/graphite lithium-ion battery, Journal of Power Sources, 195, 9, 2961-2968 (2010)
[16] Gu, W. B., & Wang, Chao-Yang Thermal and electrochemical coupled modeling of a lithium-ion cell. In Proceedings of the ECS, (Vol. 99) (pp. 748-762).
[17] Hu, Y.; Yurkovich, S., Battery cell state-of-charge estimation using linear parameter varying system techniques, Journal of Power Sources, 198, 338-350 (2012)
[18] Käbitz, Stefan; Gerschler, Jochen Bernhard; Ecker, Madeleine; Yurdagel, Yusuf; Emmermacher, Brita; André, Dave, Cycle and calendar life study of a graphite — LiNi \({}_{1 / 3}\) mn \({}_{1 / 3}\) co \({}_{1 / 3}\) o \({}_2 Li\)-ion high energy system. Part A: Full cell characterization, Journal of Power Sources, 239, 572-583 (2013)
[19] Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric, Enabling fast charging-battery thermal considerations, Journal of Power Sources, 367, 228-236 (2017)
[20] Khalil, Hassan K., Noninear systems, (Vol. 2) (1996), Prentice-Hall: Prentice-Hall New Jersey, 5-1
[21] Kim, Youngki; Mohan, Shankar; Siegel, Jason B.; Stefanopoulou, Anna G.; Ding, Yi, The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions, IEEE Transactions on Control Systems Technology, 22, 6, 2277-2286 (2014)
[22] Kim, Gi-Heon; Pesaran, Ahmad; Spotnitz, Robert, A three-dimensional thermal abuse model for lithium-ion cells, Journal of Power Sources, 170, 2, 476-489 (2007)
[23] Kim, Hahnsang; Shin, Kang G., Efficient sensing matters a lot for large-scale batteries, (2011 IEEE/ACM second international conference on cyber-physical systems (2011), IEEE), 197-205
[24] Klein, Reinhardt; Chaturvedi, Nalin A.; Christensen, Jake; Ahmed, Jasim; Findeisen, Rolf; Kojic, Aleksandar, Electrochemical model based observer design for a lithium-ion battery, IEEE Transactions on Control Systems Technology, 21, 2, 289-301 (2013)
[25] Koniak, M.; Czerepicki, A., Selection of the battery pack parameters for an electric vehicle based on performance requirements, (IOP conference series: Materials science and engineering, (Vol. 211) (2017), IOP Publishing), Article 012005 pp.
[26] Krstic, Miroslav, On global stabilization of Burgers’ equation by boundary control, Systems & Control Letters, 37, 3, 123-141 (1999) · Zbl 1074.93552
[27] Krstic, Miroslav; Smyshlyaev, Andrey, Boundary control of PDEs: A course on backstepping designs, (Vol. 16) (2008), Siam · Zbl 1149.93004
[28] Liao, Lixia; Zuo, Pengjian; Ma, Yulin; Chen, XinQun; An, Yongxin; Gao, Yunzhi, Effects of temperature on charge/discharge behaviors of LiFePO \({}_4\) cathode for Li-ion batteries, Electrochimica Acta, 60, 269-273 (2012)
[29] Liaw, Bor Yann; Roth, E. Peter; Jungst, Rudolph G.; Nagasubramanian, Ganesan; Case, Herbert L.; Doughty, Daniel H., Correlation of arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells, Journal of Power Sources, 119, 874-886 (2003)
[30] Lin, Xinfan; Perez, Hector E.; Mohan, Shankar; Siegel, Jason B.; Stefanopoulou, Anna G.; Ding, Yi, A lumped-parameter electro-thermal model for cylindrical batteries, Journal of Power Sources, 257, 1-11 (2014)
[31] Lin, Xinfan; Perez, Hector E.; Siegel, Jason B.; Stefanopoulou, Anna G.; Li, Yonghua; Anderson, R. Dyche, Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring, IEEE Transactions on Control Systems Technology, 21, 5, 1745-1755 (2013)
[32] Meurer, Thomas, On the extended luenberger-type observer for semilinear distributed-parameter systems, IEEE Transactions on Automatic Control, 58, 7, 1732-1743 (2013) · Zbl 1369.93105
[33] Moura, Scott J.; Argomedo, Federico Bribiesca; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav, Battery state estimation for a single particle model with electrolyte dynamics, IEEE Transactions on Control Systems Technology, 25, 2, 453-468 (2017)
[34] Muratori, Matteo; Canova, Marcello; Guezennec, Yann, A spatially-reduced dynamic model for the thermal characterisation of Li-ion battery cells, International Journal of Vehicle Design, 58, 2, 134 (2012)
[35] Nambu, Takao, On the stabilization of diffusion equations: boundary observation and feedback, Journal of Differential Equations, 52, 2, 204-233 (1984) · Zbl 0545.93053
[36] Park, Chanwoo; Jaura, Arun K., Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehiclesTechnical report (2003), SAE Technical Paper
[37] Pazy, Amnon, Semigroups of linear operators and applications to partial differential equations, (Vol. 44) (2012), Springer Science & Business Media
[38] Plett, Gregory L., Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation, Journal of Power Sources, 134, 2, 277-292 (2004)
[39] Rajamani, Rajesh, Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, 43, 3, 397-401 (1998) · Zbl 0905.93009
[40] Richardson, Robert R.; Ireland, Peter T.; Howey, David A., Battery internal temperature estimation by combined impedance and surface temperature measurement, Journal of Power Sources, 265, 254-261 (2014)
[41] Samad, Nassim A.; Siegel, Jason B.; Stefanopoulou, Anna G., Parameterization and validation of a distributed coupled electro-thermal model for prismatic cells, (Dynamic systems and control conference, (Vol. 46193) (2014), American Society of Mechanical Engineers), V002T23A006
[42] Smith, Kandler; Wang, Chao-Yang, Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles, Journal of Power Sources, 160, 1, 662-673 (2006)
[43] Smyshlyaev, Andrey; Krstic, Miroslav, On control design for PDEs with space-dependent diffusivity or time-dependent reactivity, Automatica, 41, 9, 1601-1608 (2005) · Zbl 1086.93023
[44] Smyshlyaev, Andrey; Krstic, Miroslav, Adaptive control of parabolic PDEs (2010), Princeton University Press · Zbl 1225.93005
[45] Song, Li; Evans, James W., Electrochemical-thermal model of lithium polymer batteries, Journal of The Electrochemical Society, 147, 6, 2086-2095 (2000)
[46] Tang, Shu-Xia; Camacho-Solorio, Leobardo; Wang, Yebin; Krstic, Miroslav, State-of-charge estimation from a thermal-electrochemical model of lithium-ion batteries, Automatica, 83, 206-219 (2017) · Zbl 1373.93057
[47] Thomas, Karen E.; Newman, John, Thermal modeling of porous insertion electrodes, Journal of The Electrochemical Society, 150, 2, A176 (2003)
[48] Tranter, Thomas George; Timms, Robert; Shearing, Paul R.; Brett, Dan, Communication—-Prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection, Journal of The Electrochemical Society (2020)
[49] Vazquez, Rafael; Krstic, Miroslav, Control of 1-D parabolic PDEs with Volterra nonlinearities, Part I: design, Automatica, 44, 11, 2778-2790 (2008) · Zbl 1152.93035
[50] Vazquez, Rafael; Krstic, Miroslav, Control of 1D parabolic PDEs with Volterra nonlinearities, Part II: analysis, Automatica, 44, 11, 2791-2803 (2008) · Zbl 1152.93036
[51] Wang, John; Liu, Ping; Hicks-Garner, Jocelyn; Sherman, Elena; Soukiazian, Souren; Verbrugge, Mark, Cycle-life model for graphite-LiFePO \({}_4\) cells, Journal of Power Sources, 196, 8, 3942-3948 (2011)
[52] Wang, Qingsong; Ping, Ping; Zhao, Xuejuan; Chu, Guanquan; Sun, Jinhua; Chen, Chunhua, Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, 208, 210-224 (2012)
[53] Xing, Yinjiao; He, Wei; Pecht, Michael; Tsui, Kwok Leung, State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures, Applied Energy, 113, 106-115 (2014)
[54] Yang, Xiao-Guang; Liu, Teng; Wang, Chao-Yang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles, Nature Energy, 1-10 (2021)
[55] Zhang, Dong; Couto, Luis D.; Moura, Scott J., Electrode-level state estimation in lithium-ion batteries via Kalman decomposition, IEEE Control Systems Letters, 5, 5, 1657-1662 (2020)
[56] Zhang, Dong; Couto, Luis D.; Park, Saehong; Gill, Preet; Moura, Scott J., Nonlinear state and parameter estimation for li-ion batteries with thermal coupling, IFAC-PapersOnLine, 53, 2, 12479-12484 (2020)
[57] Zhang, Dong; Dey, Satadru; Couto, Luis D.; Moura, Scott J., Battery adaptive observer for a single-particle model with intercalation-induced stress, IEEE Transactions on Control Systems Technology (2019)
[58] Zhang, Dong; Dey, Satadru; Perez, Hector E.; Moura, Scott J., Remaining useful life estimation of lithium-ion batteries based on thermal dynamics, (2017 American control conference (2017), IEEE), 4042-4047
[59] Zhang, Dong; Dey, Satadru; Perez, Hector E.; Moura, Scott J., Real-time capacity estimation of lithium-ion batteries utilizing thermal dynamics, IEEE Transactions on Control Systems Technology (2019)
[60] Zhang, Dong; Tang, Shu-Xia; Moura, Scott J., State and disturbance estimator for unstable reaction-advection-diffusion PDE with boundary disturbance, (2019 Proceedings of the conference on control and its applications (2019), SIAM), 67-74 · Zbl 07876443
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.