×

The quantum gravity disk: discrete current algebra. (English) Zbl 1507.83027

Summary: We study the quantization of the corner symmetry algebra of 3D gravity, that is, the algebra of observables associated with 1D spatial boundaries. In the continuum field theory, at the classical level, this symmetry algebra is given by the central extension of the Poincaré loop algebra. At the quantum level, we construct a discrete current algebra based on a quantum symmetry group given by the Drinfeld double \(\mathcal{D} \operatorname{S} \operatorname{U}(2)\). Those discrete currents depend on an integer \(N\), a discreteness parameter, understood as the number of quanta of geometry on the 1D boundary: low \(N\) is the deep quantum regime, while large \(N\) should lead back to a continuum picture. We show that this algebra satisfies two fundamental properties. First, it is compatible with the quantum space-time picture given by the Ponzano-Regge state-sum model, which provides discrete path integral amplitudes for 3D quantum gravity. The integer \(N\) then counts the flux lines attached to the boundary. Second, we analyze the refinement, coarse-graining, and fusion processes as \(N\) changes, and we show that the \(N\rightarrow \infty\) limit is a classical limit where we recover the Poincaré current algebra. Identifying such a discrete current algebra on quantum boundaries is an important step toward understanding how conformal field theories arise on spatial boundaries in quantized space-times such as in loop quantum gravity.
©2021 American Institute of Physics

MSC:

83C45 Quantization of the gravitational field
83C80 Analogues of general relativity in lower dimensions
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Czech, B.; Lamprou, L.; McCandlish, S.; Mosk, B.; Sully, J., A stereoscopic look into the bulk, J. High Energy Phys., 2016, 7, 129 · Zbl 1390.83101 · doi:10.1007/jhep07(2016)129
[2] Donnelly, W., Quantum gravity tomography
[3] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, J. High Energy Phys., 2016, 9, 102 · Zbl 1390.83016 · doi:10.1007/jhep09(2016)102
[4] Amelino-Camelia, G., Doubly special relativity, Nature, 418, 34-35 (2002) · doi:10.1038/418034a
[5] Kowalski-Glikman, J.; Nowak, S., Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B, 539, 126-132 (2002) · Zbl 0996.83004 · doi:10.1016/s0370-2693(02)02063-4
[6] Amelino-Camelia, G.; Freidel, L.; Kowalski-Glikman, J.; Smolin, L., The principle of relative locality, Phys. Rev. D, 84, 084010 (2011) · doi:10.1103/physrevd.84.084010
[7] Ghosh, A.; Perez, A., Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett., 107, 241301 (2011), 10.1103/PhysRevLett.107.241301; Ghosh, A.; Perez, A., Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett., 107, 241301 (2011); Erratum 108, 169901 (2012)., 10.1103/PhysRevLett.107.241301;
[8] Bonzom, V.; Gurau, R.; Ryan, J. P.; Tanasa, A., The double scaling limit of random tensor models, J. High Energy Phys., 2014, 9, 51 · Zbl 1333.60014 · doi:10.1007/jhep09(2014)051
[9] Gurau, R., The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B, 916, 386-401 (2017) · Zbl 1356.81180 · doi:10.1016/j.nuclphysb.2017.01.015
[10] Freidel, L.; Perez, A., Quantum gravity at the corner
[11] Freidel, L.; Perez, A.; Pranzetti, D., Loop gravity string, Phys. Rev. D, 95, 10, 106002 (2017) · doi:10.1103/physrevd.95.106002
[12] Freidel, L.; Livine, E. R.; Pranzetti, D., Gravitational edge modes: From Kac-Moody charges to Poincaré networks, Classical Quantum Gravity, 36, 19, 195014 (2019) · Zbl 1478.83089 · doi:10.1088/1361-6382/ab40fe
[13] Freidel, L.; Livine, E. R.; Pranzetti, D., Kinematical gravitational charge algebra, Phys. Rev. D, 101, 2, 024012 (2020) · doi:10.1103/physrevd.101.024012
[14] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity-I: Corner potentials and charges · Zbl 1460.83030
[15] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity-II: Corner metric and Lorentz charges · Zbl 1456.83024
[16] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity-III: Corner simplicity constraints · Zbl 1459.83016
[17] Ponzano, G.; Regge, T.; Bloch, E. F., Semiclassical limit of Racah coefficients, Spectroscopic and Group Theoretical Methods in Physics, 1-58 (1968), North-Holland Publishing Co.: North-Holland Publishing Co., Amsterdam
[18] Freidel, L.; Louapre, D., Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles, Classical Quantum Gravity, 21, 5685-5726 (2004) · Zbl 1060.83013 · doi:10.1088/0264-9381/21/24/002
[19] Freidel, L.; Louapre, D., Ponzano-Regge model revisited II: Equivalence with Chern-Simons
[20] Freidel, L.; Livine, E. R., Ponzano-Regge model revisited: III. Feynman diagrams and effective field theory, Classical Quantum Gravity, 23, 2021-2062 (2006) · Zbl 1091.83503 · doi:10.1088/0264-9381/23/6/012
[21] Barrett, J. W.; Naish-Guzman, I., The Ponzano-Regge model, Classical Quantum Gravity, 26, 155014 (2009) · Zbl 1172.83017 · doi:10.1088/0264-9381/26/15/155014
[22] Goeller, C., Quasi-local 3D quantum gravity: Exact amplitude and holography (2019), Ecole Normale Superieure, Perimeter Institute for Theoretical Physics: Ecole Normale Superieure, Perimeter Institute for Theoretical Physics, Lyon
[23] Turaev, V. G.; Viro, O. Y., State sum invariants of 3-manifolds and quantum 6j-symbols, Topology, 31, 4, 865-902 (1992) · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-a
[24] Reshetikhin, N.; Turaev, V. G., Invariants of three manifolds via link polynomials and quantum groups, Invent. Math., 103, 547-597 (1991) · Zbl 0725.57007 · doi:10.1007/bf01239527
[25] Ooguri, H., Partition functions and topology changing amplitudes in the three-dimensional lattice gravity of Ponzano and Regge, Nucl. Phys. B, 382, 276-304 (1992) · Zbl 0968.82519 · doi:10.1016/0550-3213(92)90188-h
[26] Witten, E., 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, 46 (1988) · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[27] Meusburger, C.; Noui, K., The Hilbert space of 3d gravity: Quantum group symmetries and observables, Adv. Theor. Math. Phys., 14, 6, 1651-1715 (2010) · Zbl 1241.83036 · doi:10.4310/atmp.2010.v14.n6.a3
[28] Dupuis, M.; Freidel, L.; Girelli, F., Discretization of 3d gravity in different polarizations, Phys. Rev. D, 96, 8, 086017 (2017) · doi:10.1103/physrevd.96.086017
[29] Dupuis, M.; Livine, E. R.; Pan, Q., q-deformed 3D loop gravity on the torus, Classical Quantum Gravity, 37, 2, 025017 (2020) · Zbl 1478.83084 · doi:10.1088/1361-6382/ab5d4f
[30] Rovelli, C., The basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis, Phys. Rev. D, 48, 2702-2707 (1993) · doi:10.1103/physrevd.48.2702
[31] Bonzom, V.; Freidel, L., The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Classical Quantum Gravity, 28, 195006 (2011) · Zbl 1226.83022 · doi:10.1088/0264-9381/28/19/195006
[32] Bonzom, V.; Livine, E. R., A new Hamiltonian for the topological BF phase with spinor networks, J. Math. Phys., 53, 072201 (2012) · Zbl 1279.83017 · doi:10.1063/1.4731771
[33] Bonzom, V.; Dupuis, M.; Girelli, F., Towards the Turaev-Viro amplitudes from a Hamiltonian constraint, Phys. Rev. D, 90, 10, 104038 (2014) · doi:10.1103/physrevd.90.104038
[34] Geiller, M., Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B, 924, 312-365 (2017) · Zbl 1373.81284 · doi:10.1016/j.nuclphysb.2017.09.010
[35] Grumiller, D.; Merbis, W.; Riegler, M., Most general flat space boundary conditions in three-dimensional Einstein gravity, Classical Quantum Gravity, 34, 18, 184001 (2017) · Zbl 1373.83077 · doi:10.1088/1361-6382/aa8004
[36] Banados, M.; Brotz, T.; Ortiz, M. E., Boundary dynamics and the statistical mechanics of the 2 + 1-dimensional black hole, Nucl. Phys. B, 545, 340-370 (1999) · Zbl 0953.83018 · doi:10.1016/S0550-3213(99)00069-3
[37] Bañados, M.; Ortiz, M. E., The central charge in three-dimensional anti-de Sitter space, Classical Quantum Gravity, 16, 1733-1736 (1999) · Zbl 0942.83048 · doi:10.1088/0264-9381/16/6/307
[38] Oblak, B., BMS particles in three dimensions (2016), University of Brussels · Zbl 1339.81063
[39] Krasnov, K., Pure connection action principle for general relativity, Phys. Rev. Lett., 106, 251103 (2011) · doi:10.1103/physrevlett.106.251103
[40] Freidel, L.; Speziale, S., On the relations between gravity and BF theories, SIGMA, 8, 32, 15 (2012) · Zbl 1242.83040 · doi:10.3842/sigma.2012.032
[41] Delcamp, C.; Freidel, L.; Girelli, F., Dual loop quantizations of 3d gravity
[42] Rovelli, C.; Smolin, L., Spin networks and quantum gravity, Phys. Rev. D, 52, 5743-5759 (1995) · doi:10.1103/physrevd.52.5743
[43] Livine, E. R., The spinfoam framework for quantum gravity (2010), ENS Lyon
[44] Perez, A., The spin foam approach to quantum gravity, Living Rev. Relativ., 16, 3, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[45] Bodendorfer, N., An elementary introduction to loop quantum gravity · Zbl 1331.83096
[46] Blommaert, A.; Mertens, T. G.; Verschelde, H., The Schwarzian theory—A Wilson line perspective, J. High Energy Phys., 2018, 12, 22 (2018) · Zbl 1405.83040 · doi:10.1007/jhep12(2018)022
[47] Thiemann, T., Modern canonical quantum general relativity · Zbl 1129.83004
[48] Noui, K.; Perez, A., Three-dimensional loop quantum gravity: Coupling to point particles, Classical Quantum Gravity, 22, 4489-4514 (2005) · Zbl 1086.83015 · doi:10.1088/0264-9381/22/21/005
[49] Noui, K.; Perez, A., Three-dimensional loop quantum gravity: Physical scalar product and spin foam models, Classical Quantum Gravity, 22, 1739-1762 (2005) · Zbl 1072.83009 · doi:10.1088/0264-9381/22/9/017
[50] Dowdall, R.; Gomes, H.; Hellmann, F., Asymptotic analysis of the Ponzano-Regge model for handlebodies, J. Phys. A: Math. Theor., 43, 115203 (2010) · Zbl 1200.83044 · doi:10.1088/1751-8113/43/11/115203
[51] Dowdall, R. J.; Fairbairn, W. J., Observables in 3d spinfoam quantum gravity with fermions, Gen. Relativ. Gravitation, 43, 1263-1307 (2011) · Zbl 1215.83031 · doi:10.1007/s10714-010-1107-0
[52] Barrett, J. W.; Hellmann, F., Holonomy observables in Ponzano-Regge-type state sum models, Classical Quantum Gravity, 29, 045006 (2012) · Zbl 1235.83040 · doi:10.1088/0264-9381/29/4/045006
[53] Dittrich, B.; Goeller, C.; Livine, E. R.; Riello, A., Quasi-local holographic dualities in non-perturbative 3D quantum gravity, Classical Quantum Gravity, 35, 13, 13LT01 (2018) · Zbl 1409.83130 · doi:10.1088/1361-6382/aac606
[54] Dittrich, B.; Goeller, C.; Livine, E. R.; Riello, A., Quasi-local holographic dualities in non-perturbative 3d quantum gravity I—Convergence of multiple approaches and examples of Ponzano-Regge statistical duals, Nucl. Phys. B, 938, 807-877 (2019) · Zbl 1409.83059 · doi:10.1016/j.nuclphysb.2018.06.007
[55] Dittrich, B.; Goeller, C.; Livine, E. R.; Riello, A., Quasi-local holographic dualities in non-perturbative 3d quantum gravity II—From coherent quantum boundaries to BMS_3 characters, Nucl. Phys. B, 938, 878-934 (2019) · Zbl 1409.83060 · doi:10.1016/j.nuclphysb.2018.06.010
[56] Goeller, C.; Livine, E. R.; Riello, A., Non-perturbative 3D quantum gravity: Quantum boundary states and exact partition function, Gen. Relativ. Gravitation, 52, 3, 24 (2020) · Zbl 1442.83012 · doi:10.1007/s10714-020-02673-3
[57] Ashtekar, A.; Husain, V.; Rovelli, C.; Samuel, J.; Smolin, L., 2 + 1-quantum gravity as a toy model for the 3 + 1 theory, Classical Quantum Gravity, 6, L185 (1989) · doi:10.1088/0264-9381/6/10/001
[58] Batista, E.; Majid, S., Noncommutative geometry of angular momentum space U(su(2)), J. Math. Phys., 44, 107-137 (2003) · Zbl 1061.81040 · doi:10.1063/1.1517395
[59] Gutierrez-Sagredo, I.; Ballesteros, A.; Herranz, F. J., Drinfel’d double structures for Poincaré and Euclidean groups, J. Phys. Conf. Ser., 1194, 1, 012041 (2019) · doi:10.1088/1742-6596/1194/1/012041
[60] Joung, E.; Mourad, J.; Noui, K., Three dimensional quantum geometry and deformed Poincare symmetry, J. Math. Phys., 50, 052503 (2009) · Zbl 1187.58008 · doi:10.1063/1.3131682
[61] Freidel, L.; Majid, S., Noncommutative harmonic analysis, sampling theory and the Duflo map in 2 + 1 quantum gravity, Classical Quantum Gravity, 25, 045006 (2008) · Zbl 1190.83070 · doi:10.1088/0264-9381/25/4/045006
[62] Ashtekar, A.; Romano, J. D., Chern-Simons and palatini actions and (2 + 1) gravity, Phys. Lett. B, 229, 56-60 (1989) · doi:10.1016/0370-2693(89)90155-x
[63] Kashaev, R., Heisenberg double and pentagon relation (1995) · Zbl 0870.16023
[64] Aghaei, N.; Pawelkiewicz, M., Heisenberg double and Drinfeld double of the quantum superplane
[65] Maitland, A., A first taste of quantum gravity effects: Deforming phase spaces with the Heisenberg double (2014), University of Waterloo, ON, Canada
[66] Kazhdan, D.; Lusztig, G., Tensor structures arising from affine Lie algebras, J. Am. Math. Soc., 6, 4, 905-947 (1993) · Zbl 0786.17017 · doi:10.1090/s0894-0347-1993-99999-x
[67] Faddeev, L.; Volkov, A. Y., Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B, 315, 311-318 (1993) · Zbl 0864.17042 · doi:10.1016/0370-2693(93)91618-w
[68] Faddeev, L.; Volkov, A. Y., Shift operator for nonAbelian lattice current algebra, Publ. Res. Inst. Math. Sci., 40, 1113-1125 (2004) · Zbl 1069.81038 · doi:10.2977/prims/1145475443
[69] Faddeev, L. D.; Volkov, A. Y., Algebraic quantization of integrable models in discrete space-time · Zbl 0931.35136
[70] Faddeev, L. D.; Kashaev, R. M.; Volkov, A. Y., Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality, Commun. Math. Phys., 219, 199-219 (2001) · Zbl 0981.81052 · doi:10.1007/s002200100412
[71] Zou, Y.; Milsted, A.; Vidal, G., Conformal fields and operator product expansion in critical quantum spin chains, Phys. Rev. Lett., 124, 4, 040604 (2020) · doi:10.1103/physrevlett.124.040604
[72] Grans-Samuelsson, L.; Jacobsen, J. L.; Saleur, H., The action of the Virasoro algebra in quantum spin chains. Part I. The non-rational case, J. High Energy Phys., 2021, 2, 130 · Zbl 1460.81062 · doi:10.1007/jhep02(2021)130
[73] Grans-Samuelsson, L.; Liu, L.; He, Y.; Jacobsen, J. L.; Saleur, H., The action of the Virasoro algebra in the two-dimensional Potts and loop models at generic Q, J. High Energy Phys., 2020, 10, 109 · doi:10.1007/jhep10(2020)109
[74] Milsted, A.; Vidal, G., Tensor networks as conformal transformations
[75] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, J. High Energy Phys., 2015, 6, 149 · Zbl 1388.81094 · doi:10.1007/jhep06(2015)149
[76] Freidel, L.; Krasnov, K., 2D conformal field theories and holography, J. Math. Phys., 45, 2378-2404 (2004) · Zbl 1071.81093 · doi:10.1063/1.1745127
[77] Krasnov, K., Holography and Riemann surfaces, Adv. Theor. Math. Phys., 4, 929-979 (2000) · Zbl 1011.81068 · doi:10.4310/atmp.2000.v4.n4.a5
[78] Krasnov, K., Twistors, CFT and holography
[79] Krasnov, K., Holography for the Lorentz group Racah coefficients, Classical Quantum Gravity, 22, 1933-1944 (2005) · Zbl 1071.83044 · doi:10.1088/0264-9381/22/11/003
[80] Freidel, L.; Krasnov, K.; Livine, E. R., Holomorphic factorization for a quantum tetrahedron, Commun. Math. Phys., 297, 45-93 (2010) · Zbl 1211.22013 · doi:10.1007/s00220-010-1036-5
[81] Dittrich, B.; Hnybida, J., Ising model from intertwiners · Zbl 1375.82071
[82] Bonzom, V.; Costantino, F.; Livine, E. R., Duality between spin networks and the 2D Ising model, Commun. Math. Phys., 344, 2, 531-579 (2016) · Zbl 1346.82005 · doi:10.1007/s00220-015-2567-6
[83] Mazenc, E. A.; Shyam, V.; Soni, R. M., A \(T \overline{T}\) deformation for curved spacetimes from 3d gravity
[84] More precisely, it ensures that the leakage of symplectic flux can be reabsorbed into a boundary redefinition of the symplectic form \(\operatorname{\Omega}_{\operatorname{\Sigma}} \to \operatorname{\Omega}_{\operatorname{\Sigma}}^\prime = \operatorname{\Omega}_{\operatorname{\Sigma}} + \oint_S \omega_R\).
[85] In order to clearly visualize the deformation of the boundary vector fields, one can introduce an arbitrary parameter γ and define the vector fields on Σ as ξ_X ≔ X∂_θ + γX′∂_r. This parameter does not affect the action of the diffeomorphisms and, in the end, simply rescales the central charges λ and μ.
[86] If one introduces a shift in the vacuum energy and defines \(\hat{\mathcal{D}}_n = \mathcal{D}_n - \frac{c}{24} \delta_{n, 0} \), one recovers the usual expression \(i \{\hat{\mathcal{D}}_n, \hat{\mathcal{D}}_m \} = (n - m) \hat{\mathcal{D}}_{n + m} + \frac{c}{12} n(n^2 - 1) \delta_{n + m, 0} .\)
[87] We could imagine a fine-tuned scenario where the radial fields A_r and e_r still rotate while keeping their scalar products constant, but this does not seem at a first glance to affect the charge conservation in an interesting way.
[88] As a Lie algebra, this is simply the Euclidean algebra \(\mathfrak{i} \mathfrak{s} \mathfrak{o}(3)\), where \(\hat{X}\) plays the role of angular momenta, while \(\hat{G}_a = \lambda P_a\) plays the role of momenta. The parameter λ with the physical dimension of a length plays the role of the Planck length in 3D gravity.^58,60
[89] This completion contains only finite sums of the exponential function. It is possible to include a wider class of functions for this completion; see Ref. 61. For the purpose of this paper, we only need to consider the group algebra.
[90] With the standard tensorial notations, the three R-matrices acting on the triple tensorial product are explicitly \(R_{12} = \sum_k(\delta_k \otimes \mathbb{I}) \otimes(1 \otimes k) \otimes(1 \otimes \mathbb{I}), R_{13} = \sum_k(\delta_k \otimes \mathbb{I}) \otimes(1 \otimes \mathbb{I}) \otimes(1 \otimes k), R_{23} = \sum_k(1 \otimes \mathbb{I}) \otimes(\delta_k \otimes \mathbb{I}) \otimes(1 \otimes k) .\)
[91] The comma between the indices is introduced in order to easily distinguish the index. It will appear in the notation when needed.
[92] The action of \(\hat{G}_{i j}\) on another elements \(\hat{G}_{p q}\) is the action by conjugation \(\hat{G}_{i j} ▹ \hat{G}_{p q} = \hat{G}_{i j} \hat{G}_{p q} \hat{G}_{i j}^{- 1} .\)
[93] From a broader point of view, this is reminiscent of a celebrated and fundamental result of mathematical physics anticipated by Moore and Seiberg and due to Kazhdan and Lusztig,^66 who proved the equivalence as the braided tensor category between the category of positive energy representations of the loop algebra \(L_\ell(\mathfrak{g})\) at level ℓ and the category of representations of the quantum group \(U_q(\mathfrak{g})\) for \(q = e^{i \frac{\pi}{\kappa}}\) with \(\kappa = \ell + \check{h} \notin \mathbb{Q}_{\geq 0} \), where \(\check{h}\) is the dual coxeter number. We leave for future investigation the precise dictionary and correspondence between the discrete and continuum objects and algebras, which is clearly the missing part of the present study. Our goal would then be to establish in a mathematically rigorous way the equivalent of the Kazhdan-Lusztig result at the discrete level.
[94] The notation is such that \(P_{[\alpha_{. + 1} + \alpha_., \varphi]} = \sum_{j = 1}^N [\alpha_{j + 1} + \alpha_j, \varphi_j]^c \hat{g}_j^c\).
[95] We simply use the fact that \(\alpha^a(\theta_{j + 1}) + \alpha^a(\theta_j) = 2 \alpha^a(\theta_j) + O \left(\frac{1}{N}\right) \text{and} \alpha^a(\theta_{j + 1}) - \alpha^a(\theta_j) = \frac{2 \pi}{N} \partial_\theta \alpha^a |_{\theta_j} + O \left(\frac{1}{N^2}\right)\) with the fact that \(\hat{g}^0 \sim 1\) and \(\hat{g}^a \sim \frac{1}{N}\) to show that \(\frac{i}{4} \hat{g}_j^a(\alpha_{j + 1}^a - \alpha_j^a) \sim O \left(\frac{1}{N^2}\right) \to_{N \to \infty} 0, P_{[\alpha_{. + 1} + \alpha_., \varphi_j]} \sim 2 P_{[\alpha, \varphi]} \sum_{k = 1}^N(\alpha_{j + 1}^a - \alpha_j^a) \varphi_j^a \hat{g}_j^0 = \frac{2 \pi}{N} \sum_{k = 1}^N \partial_\theta \alpha^a |_{\theta_j} \varphi^a(\theta_j) \sim \oint \varphi \text{d} \alpha .\)
[96] With the usual convention where \(\hslash = 1\).
[97] The floor function ⌊·⌋ is defined by \(\lfloor \frac{2 p + 1}{2} \rfloor = p\) and \(\lfloor \frac{2 p}{2} \rfloor = p\) for an integer p.
[98] All operators trivially commute with \(\hat{J}_n^0\).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.