×

Constraining spacetime deformation based on astrophysical observations from radio pulsars. (English) Zbl 1490.83011

Summary: The present work is devoted to investigations of cut-off for plasma magnetospheric radiations around magnetized neutron stars in the presence of spacetime deformation. In this way, we first analysed behaviour deathline conditions of curvature radiations (CR), and inverse Compton scattering (ICS) around deformed neutron stars. Through the analyses, we have obtained upper limits for the deformation parameter which causes switchingof pulsars in radio to \(\gamma \)-rays bands of the electromagnetic spectrum. It is observed that the upper limits for the radio waves and \(\gamma \)-rays cut off are not the same, but they are different, the limit is higher for radio wave cut off than \(\gamma \)-rays. Moreover, our detailed analyses show that this limit also depends on the period of pulses from pulsars and its delay (period derivation). Finally, we have obtained upper limits for the deformation parameter for selected several millisecond pulsars using the deathline conditions.

MSC:

83B05 Observational and experimental questions in relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Abdikamalov, EB; Ahmedov, BJ; Miller, JC, The magnetosphere of oscillating neutron stars in general relativity, Mon. Not. R. Astron. Soc., 395, 443-461 (2009) · doi:10.1111/j.1365-2966.2009.14540.x
[2] Ahmedov, BJ; Fattoyev, FJ, Magnetic fields of spherical compact stars in a braneworld, Phys. Rev. D, 78, 4, 047501 (2008) · doi:10.1103/PhysRevD.78.047501
[3] Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B., Shadow of rotating non-Kerr black hole, Phys. Rev. D, 88, 6, 064004 (2013) · doi:10.1103/PhysRevD.88.064004
[4] Beloborodov, AM, Polar-cap accelerator and radio emission from pulsars, Astrophys. J., 683, L41 (2008) · doi:10.1086/590079
[5] Bokhari, AH; Rayimbaev, J.; Ahmedov, B., Radio loudness and spindown of pulsars in Einstein-aether gravity, Phys. Dark Univ., 34, 100901 (2021) · doi:10.1016/j.dark.2021.100901
[6] Chen, K.; Ruderman, M., Pulsar death lines and death valley, ApJ, 402, 264 (1993) · doi:10.1086/172129
[7] Deutsch, AJ, The electromagnetic field of an idealized star in rigid rotation in vacuo, Ann. Astrophys., 18, 1 (1955)
[8] Freire, PC; Camilo, F.; Kramer, M.; Lorimer, DR; Lyne, AG; Manchester, RN; D’Amico, N., Further results from the timing of the millisecond pulsars in 47 Tucanae, Mon. Not. R. Astron., 340, 4, 1359-1374 (2003) · doi:10.1046/j.1365-8711.2003.06392.x
[9] Gold, T., Rotating neutron stars as the origin of the pulsating radio sources, Nature, 218, 731-732 (1968) · doi:10.1038/218731a0
[10] Goldreich, P.; Julian, WH, Pulsar electrodynamics, Astrophys. J., 157, 869 (1969) · doi:10.1086/150119
[11] Hakimov, A.; Atamurotov, F., Gravitational lensing by a non-Schwarzschild black hole in a plasma, Astrophys. Space Sci., 361, 112 (2016) · doi:10.1007/s10509-016-2702-7
[12] Hartle, JB; Thorne, KS, Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars, Astrophys. J., 153, 807 (1968) · doi:10.1086/149707
[13] Johannsen, T.; Psaltis, D., Testing the no-hair theorem with observations in the electromagnetic spectrum. I. Properties of a quasi-Kerr spacetime, Astrophys J., 716, 187-197 (2010) · doi:10.1088/0004-637X/716/1/187
[14] Johannsen, T.; Psaltis, D., Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem, Phys. Rev. D, 83, 12, 124015 (2011) · doi:10.1103/PhysRevD.83.124015
[15] Kantor, EM; Tsygan, AI, The death lines of radio pulsars for dipolar and asymmetric magnetic fields, Astron. Rep., 48, 1029-1036 (2004) · doi:10.1134/1.1836026
[16] Lomiashvili, D.; Machabeli, G.; Malov, I., On the nature of radio pulsars with long periods, Astrophys. J., 637, 2, 1010-1015 (2006) · doi:10.1086/498419
[17] Medin, Z.; Lai, D., Pair cascades in the magnetospheres of strongly magnetized neutron stars, Mon. Not. R. Astron. Soc., 406, 2, 1379-1404 (2010) · doi:10.1111/j.1365-2966.2010.16776.x
[18] Morozova, VS; Ahmedov, BJ, Electromagnetic fields of slowly rotating compact magnetized stars in braneworld, Astrophys. Space Sci., 333, 133-142 (2011) · Zbl 1230.83052 · doi:10.1007/s10509-010-0560-2
[19] Morozova, VS; Ahmedov, BJ; Abdujabbarov, AA; Mamadjanov, AI, Plasma magnetosphere of rotating magnetized neutron star in the braneworld, Astrophys. Space Sci., 330, 257-266 (2010) · Zbl 1203.85004 · doi:10.1007/s10509-010-0388-9
[20] Morozova, VS; Ahmedov, BJ; Kagramanova, VG, General relativistic effects of gravitomagnetic charge on pulsar magnetospheres and particle acceleration in the polar cap, Astrophys. J., 684, 1359-1365 (2008) · doi:10.1086/590322
[21] Morozova, VS; Ahmedov, BJ; Zanotti, O., General relativistic magnetospheres of slowly rotating and oscillating magnetized neutron stars, Mon. Not. R. Astron. Soc., 408, 490-502 (2010) · doi:10.1111/j.1365-2966.2010.17131.x
[22] Morozova, VS; Ahmedov, BJ; Zanotti, O., Explaining radio emission of magnetars via rotating and oscillating magnetospheres of neutron stars, Mon. Not. R. Astron. Soc., 419, 2147-2155 (2012) · doi:10.1111/j.1365-2966.2011.19866.x
[23] Morozova, VS; Ahmedov, BJ; Zanotti, O., Explaining the subpulse drift velocity of pulsar magnetosphere within the space-charge limited flow model, Mon. Not. R. Astron. Soc., 444, 2, 1144-1156 (2014) · doi:10.1093/mnras/stu1486
[24] Muslimov, AG; Tsygan, AI, Electrohydrodynamic mechanism of plasma ejection in radio pulsars, Astrophysics, 29, 625-633 (1988) · doi:10.1007/BF01005968
[25] Rayimbaev, J.; Tadjimuratov, P., Can modified gravity silence radio-loud pulsars?, Phys. Rev. D, 102, 2, 024019 (2020) · doi:10.1103/PhysRevD.102.024019
[26] Rayimbaev, J.; Turimov, B.; Ahmedov, B., Braneworld effects in plasma magnetosphere of a slowly rotating magnetized neutron star, Int. J. Mod. Phys. D, 28, 10, 1950128-209 (2019) · Zbl 1425.83078 · doi:10.1142/S0218271819501281
[27] Rayimbaev, J.; Turimov, B.; Marcos, F.; Palvanov, S.; Rakhmatov, A., Particle acceleration and electromagnetic field of deformed neutron stars, Mod. Phys. Lett. A, 35, 9, 2050056 (2020) · doi:10.1142/S021773232050056X
[28] Rayimbaev, J.; Turimov, B.; Palvanov, S.: Plasma magnetosphere of slowly rotating magnetized neutron star in branewold. In: International Journal of Modern Physics Conference Series, International Journal of Modern Physics Conference Series, vol. 49, p. 1960019-209 (2019). doi:10.1142/S201019451960019X
[29] Rayimbaev, JR, Magnetized particle motion around non-Schwarzschild black hole immersed in an external uniform magnetic field, Astrophys. Space Sci., 361, 288 (2016) · doi:10.1007/s10509-016-2879-9
[30] Rayimbaev, JR; Ahmedov, BJ; Juraeva, NB; Rakhmatov, AS, Plasma magnetosphere of deformed magnetized neutron star, Astrophys. Space Sci., 356, 301-308 (2015) · doi:10.1007/s10509-014-2208-0
[31] Rezzolla, L.; Ahmedov, BJ; Miller, JC, General relativistic electromagnetic fields of a slowly rotating magnetized neutron star-I. Formulation of the equations, Mon. Not. R. Astron. Soc., 322, 723-740 (2001) · doi:10.1046/j.1365-8711.2001.04161.x
[32] Ruderman, MA; Sutherland, PG, Theory of pulsars: polar gaps, sparks, and coherent microwave radiation, APJ, 196, 51-72 (1975) · doi:10.1086/153393
[33] Sakai, N.; Shibata, S., General relativistic electromagnetism and particle acceleration in a pulsar polar cap, Astrophys. J., 584, 427-432 (2003) · doi:10.1086/345616
[34] Timokhin, AN, Impact of neutron star oscillations on the accelerating electric field in the polar cap of pulsar, Astrophys. Space Sci., 308, 345-351 (2007) · doi:10.1007/s10509-007-9334-x
[35] Turimov, BV; Ahmedov, BJ; Hakimov, AA, Stationary electromagnetic fields of slowly rotating relativistic magnetized star in the braneworld, Phys. Rev. D, 96, 10, 104001 (2017) · doi:10.1103/PhysRevD.96.104001
[36] Usov, VV; Melrose, DB, Pulsars with strong magnetic fields: polar gaps, bound pair creation and nonthermal luminosities, Austral. J. Phys., 48, 571-612 (1995) · doi:10.1071/PH950571
[37] Will, CM, The confrontation between general relativity and experiment, Living Rev. Relativ., 9, 3 (2006) · Zbl 1316.83020 · doi:10.12942/lrr-2006-3
[38] Yunes, N.; Pretorius, F., Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework, Phys. Rev. D, 80, 12, 122003 (2009) · doi:10.1103/PhysRevD.80.122003
[39] Zhang, B.; Harding, AK; Muslimov, AG, Radio pulsar death line revisited: is PSR J2144-3933 anomalous?, Astrophys. J., 531, 2, L135-L138 (2000) · doi:10.1086/312542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.