×

Dynamical properties, chirped solutions, and chaotic behaviors of the extended nonlinear Schrödinger equation. (English) Zbl 07869421

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] M.Gitterman, Introduction to nonlinear science: G. Nicolis, Cambridge University Press, Cambridge England, 1996, p. 1995.
[2] A. R.Seadawy, S. T. R.Rizvi, B.Mustafa, K.Ali, and S.Althubiti, Chirped periodic waves for an cubic‐quintic nonlinear Schrödinger equation with self steepening and higher order nonlinearities, Chaos Solitons Fractals156 (1804), no. 11, 2022. · Zbl 1506.35213
[3] J.Chai, B.Tian, H. L.Zhen, and W. R.Sun, Conservation laws, bilinear forms and solitons for a fifth‐order nonlinear Schrödinger equation for the attosecond pulses in an optical fiber, Annals Phys.359 (2015), 371-384. · Zbl 1343.35211
[4] M.Justin, M. B.Hubert, G.Betchewe, S. Y.Doka, and K. T.Crepin, Chirped solitons in derivative nonlinear Schrödinger equation, Chaos Solitons Fractals107 (2018), 49-54. · Zbl 1380.35143
[5] S. T. R.Rizvi, A. R.Seadawy, S.Ahmed, M.Younis, and K.Ali, Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation, Chaos Solitons Fractals151 (2021), no. 11, 1251. · Zbl 1498.35591
[6] J.Lenells, Dressing for a novel integrable generalization of the nonlinear Schrödinger equation, J. Nonlinear Sci.20 (2010), 709-722. · Zbl 1209.35130
[7] H.Leblond, H.Triki, and D.Mihalache, Theoretical studies of ultrashort‐soliton propagation in nonlinear optical media from a general quantum model, Romanian Reports Phys.65 (2013), no. 3, 925-942.
[8] A.Biswas, A. H.Bhrawy, A. A.Alshaery, and E. M.Hilal, Thirring optical solitons with Kerr law nonlinearity, Optik125 (2014), no. 17, 4932-4934.
[9] C. Q.Dai, R. P.Chen, Y. Y.Wang, and Y.Fan, Dynamics of light bullets in inhomogeneous cubic‐quintic‐septimal nonlinear media with PT‐symmetric potentials, Nonlinear Dyn.87 (2017), no. 3, 1675-1683.
[10] C. Q.Dai, G. Q.Zhou, R. P.Chen, X. J.Lai, and J.Zheng, Vector multipole and vortex solitons in two‐dimensional Kerr media, Nonlinear Dyn.88 (2017), 2629-2635.
[11] Y. Y.Wang, L.Chen, C. Q.Dai, J.Zheng, and Y.Fan, Exact vector multipole and vortex solitons in the media with spatially modulated cubic‐quintic nonlinearity, Nonlinear Dyn.90 (2017), 1269-1275.
[12] C. Q.Dai, J.Liu, Y.Fan, and D. G.Yu, Two‐dimensional localized Peregrine solution and breather excited in a variable‐coefficient nonlinear Schrödinger equation with partial nonlocality, Nonlinear Dyn.88 (2017), 1373-1383.
[13] V. G.Veselago, Electrodynamics of substances with simultaneously negative and, Uspekhi Fizicheskikh Nauk92 (1967), no. 7, 517.
[14] H.Triki, A.Biswas, M. M.Babatin, and Q.Zhou, Chirped dark solitons in optical metamaterials, Optik158 (2018), 312-315.
[15] C.Caloz and T.Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications, John Wiley and Sons, 2005.
[16] J. B.Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett.85 (2000), no. 18, 3966.
[17] D. R.Smith, W. J.Padilla, D. C.Vier, S. C.Nemat‐Nasser, and S.Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett.84 (2000), no. 18, 4184.
[18] A. D.Boardman, O.Hess, R. C.Mitchell‐Thomas, Y. G.Rapoport, and L.Velasco, Temporal solitons in magnetooptic and metamaterial waveguides, Photonics Nanostruct. ‐Fundam. Appl.8 (2010), no. 4, 228-243.
[19] G.Xu, J. M.Niff, A.Boardman, and B.Kibler, Space‐time evolution of optical breathers and modulation instability patterns in metamaterial waveguides, Wave Motion93 (2448), no. 10, 2020. · Zbl 1524.78052
[20] M.Scalora, M. S.Syrchin, N.Akozbek, E. Y.Poliakov, G.D’ Aguanno, N.Mattiucci, M. J.Bloemer, and A. M.Zheltikov, Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials, Phys. Rev. Lett.95 (2005), no. 1, 13902.
[21] Y. N.Shen, P. G.Kevrekidis, G. P.Veldes, D. J.Frantzeskakis, D.DiMarzio, X.Lan, and V.Radisic, From solitons to rogue waves in nonlinear left‐handed metamaterials, Phys. Rev. Lett.95 (2017), no. 3, 32223.
[22] S.Wen, Y.Xiang, X.Dai, Z.Tang, W.Su, and D.Fan, Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials, Phys. Rev. A75 (2007), no. 3, 33815.
[23] A. K.Sarma and M.Saha, Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium, J. Optical Soc. Am. B28 (2011), no. 4, 944-948.
[24] C. Q.Dai, Y. Y.Wang, Y.Fan, and Y.Ding‐Guo, Reconstruction of stability for Gaussian spatial solitons in quintic‐septimal nonlinear materials under PT PT‐symmetric potentials, Nonlinear Dyn.92 (2018), 1351-1358.
[25] C. Q.Dai, Y.Fan, and Y. Y.Wang, Three‐dimensional optical solitons formed by the balance between different‐order nonlinearities and high‐order dispersion/diffraction in parity‐time symmetric potentials, Nonlinear Dyn.98 (2019), 489-499. · Zbl 1430.78005
[26] Y. Y.Wang, C. Q.Dai, Y. Q.Xu, J.Zheng, and Y.Fan, Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation, Nonlinear Dyn.92 (2018), 1261-1269.
[27] W.Liu, M.Liu, X.Chen, X.Chen, T.Shen, M.Lei, J.Guo, H.Deng, W.Zhang, C.Dai, X.Zhang, and Z.Wei, Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers, Commun. Phys.3 (2020), no. 1, 15.
[28] R.Zhong, X.Zhang, C.Hu, Y. Y.Wang, and C. Q.Dai, Chirped bright and dark solitons of electric and magnetic coupled nonlinear field equations in negative‐index metamaterials, Optik164 (2018), 460-464.
[29] H.Triki, Q.Zhou, W.Liu, A.Biswas, L.Moraru, Y.Yıldırım, H. M.Alshehri, and M. R.Belic, Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas‐Lenells system, Chaos Solitons Fractals155 (1751), no. 11, 2022. · Zbl 1498.35515
[30] H.Triki, Q.Zhou, A.Biswas, W.Liu, Y.Yıldırım, H. M.Alshehri, and M. R.Belic, Chirped optical solitons having polynomial law of nonlinear refractive index with self‐steepening and nonlinear dispersion, Phys. Lett. A417 (2021), 127698. · Zbl 07412707
[31] H.Triki, A.Benlalli, Q.Zhou, A.Biswas, M.Ekici, A. K.Alzahrani, S. L.Xu, and M. R.Belic, Formation of chirped kink similaritons in non‐Kerr media with varying Raman effect, Results Phys.26 (2021), 104381.
[32] A.Biswasa, M.Ekici, A.Sonmezoglu, and R. T.Alqahtani, Sub‐pico‐second chirped optical solitons in mono‐mode fibers with Kaup‐Newell equation by extended trial function method, Optik168 (2018), 208-216.
[33] C. S.Liu, Classification of all single travelling wave solutions to Calogero‐Degasperis‐Focas equation, Commun. Theor. Phys.48 (2007), no. 4, 601. · Zbl 1267.35065
[34] C. S.Liu, All single traveling wave solutions to (3+1)‐dimensional Nizhnok‐Novikov‐Veselov equation, Commun. Theor. Phys.45 (2006), no. 6, 991-992.
[35] C. S.Liu, The classification of travelling wave solutions and superposition of multi‐solutions to Camassa‐Holm equation with dispersion, Chin. Phys.16 (2007), no. 7, 1832.
[36] C. S.Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun.181 (2010), no. 2, 317-324. · Zbl 1205.35262
[37] C. S.Liu, Exact traveling wave solutions for a kind of generalized Ginzburg‐Landau equation, Commun. Theor. Phys.43 (2005), no. 5, 787-790.
[38] C. S.Liu, Trial equation method and its applications to nonlinear evolution equations, Acta Phys. Sin.54 (2005), 2505-2509. · Zbl 1202.35059
[39] K. S.Sreelatha and K. B.Joseph, On the integrability properties of a perturbed nonlinear Schrödinger field equation, Chaos Solitons Fractals9 (1998), no. 11, 1865-1874. · Zbl 0935.35157
[40] Y.Li and Y.Kai, Wave structures and the chaotic behaviors of the cubic‐quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers, Nonlinear Dyn.111 (2023), no. 9, 8701-8712.
[41] Y.Kai and L. K.Huang, Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis‐ Procesi model, Nonlinear Dyn.111 (2023), no. 9, 8687-8700.
[42] J. X.Tang and X.Su, Traveling wave solutions, dynamic properties and chaotic behaviors of Schrödinger equation in magneto‐optic waveguide with anti‐cubic nonlinearity, Results Phys.54 (2023), 107106.
[43] R.Yang and Y.Kai, Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrödinger equation in fiber Bragg gratings, Modern Phys. Lett. B38 (2024), no. 06, 2350239.
[44] Y.Kai, Y.Li, and L.Huang, Topological properties and wave structures of Gilson‐Pickering equation, Chaos Solitons Fractals157 (1899), no. 11, 2022. · Zbl 1498.35462
[45] Y.Kai and Y.Li, A study of Kudryashov equation and its chaotic behaviors, Waves Random Complex Media (2023), 1-17.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.