×

Analysis of a novel two-Lane hydrodynamic lattice model accounting for driver’s aggressive effect and flow difference integral. (English) Zbl 07348283

Summary: In the actual traffic environment, the driver’s aggressive driving behaviors are closely related to the traffic conditions at the next-nearest grid point at next time step. The driver adjusts the acceleration of the driving vehicle by predicting the density of the front grid points. Considering the driver’s aggressive effect and the relative flow difference integral, a novel two-lane lattice hydrodynamic model is presented in this paper. The linear stability method is used to analyze the current stability of the new model, and the neutral stability curve is obtained. The nonlinear analysis of the new model is carried out by using the theory of perturbations, and the mKdV equation describing the density of the blocked area is derived. The theoretical analysis results are verified by numerical simulation. From the analysis results, it can be seen that the driver’s aggressive effect and the relative flow difference integral can improve the stability of traffic flow comprehensively.

MSC:

90B20 Traffic problems in operations research
34A33 Ordinary lattice differential equations
Full Text: DOI

References:

[1] Ma, C.; He, R., Green wave traffic control system optimization based on adaptive genetic-artificial fish swarm algorithm, Neural Computing and Applications, 31, 7, 2073-2083 (2019) · doi:10.1007/s00521-015-1931-y
[2] Ma, C. X.; Yang, D., Public transit network planning in small cites considering safety and convenience, Advances in Mechanical Engineering, 12, 1-12 (2020) · doi:10.1177/1687814020902351
[3] Ma, C. X.; Hao, W.; Pan, F. Q.; Xiang, W., Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm, PLoS One, 13, 6 (2018) · doi:10.1371/journal.pone.0198931
[4] Kaur, R.; Sharma, S., Analysis of driver’s characteristics on a curved road in a lattice model, Physica A: Statistical Mechanics and Its Applications, 471, 59-67 (2017) · doi:10.1016/j.physa.2016.11.116
[5] Wang, Z.; Cheng, R.; Ge, H., Nonlinear analysis of an improved continuum model considering mean-field velocity difference, Physics Letters A, 383, 7, 622-629 (2019) · Zbl 1475.90015 · doi:10.1016/j.physleta.2019.01.011
[6] Cheng, R.; Ge, H.; Wang, J., An extended continuum model accounting for the driver’s timid and aggressive attributions, Physics Letters A, 381, 15, 1302-1312 (2017) · Zbl 1371.90042 · doi:10.1016/j.physleta.2017.02.018
[7] Wang, T.; Cheng, R.; Ge, H., An extended two-lane lattice hydrodynamic model for traffic flow on curved road with passing, Physica A: Statistical Mechanics and Its Applications, 533, 121915 (2019) · Zbl 07570007 · doi:10.1016/j.physa.2019.121915
[8] Wang, T.; Cheng, R.; Ge, H., Analysis of a novel two-lane lattice hydrodynamic model considering the empirical lane changing rate and the self-stabilization effect, IEEE Access, 7 (2019) · doi:10.1109/access.2019.2956783
[9] Zhai, Q. T.; Ge, H. X.; Cheng, R. J., An extended continuum model considering optimal velocity change with memory and numerical tests, Physica A, 490, 774-785 (2018) · Zbl 1514.90086
[10] Tang, T.-Q.; Shi, W.-F.; Huang, H.-J.; Wu, W.-X.; Song, Z., A route-based traffic flow model accounting for interruption factors, Physica A: Statistical Mechanics and Its Applications, 514, 767-785 (2019) · Zbl 07562414 · doi:10.1016/j.physa.2018.09.098
[11] Cheng, R. J.; Ge, H. X.; Wang, J. F., The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect, Applied Mathematics and Computation, 332, 493-505 (2018) · Zbl 1427.82021
[12] Nagatani, T., Modified KdV equation for jamming transition in the continuum models of traffic, Physica A, 261, 3-4, 599-607 (1998) · doi:10.1016/s0378-4371(98)00347-1
[13] Nagatani, T., TDGL and MKdV equations for jamming transition in the lattice models of traffic, Physica A: Statistical Mechanics and Its Applications, 264, 3-4, 581-592 (1999) · doi:10.1016/s0378-4371(98)00466-x
[14] Xue, Y., Lattice models of the optimal traffic current, Acta Physica Sinica, 53, 25-30 (2004)
[15] Ge, H. X.; Dai, S. Q.; Xue, Y.; Dong, L. Y., Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system, Physical Review E, 71 (2005) · doi:10.1103/physreve.71.066119
[16] Ge, H.-X.; Cheng, R.-J., The “backward looking” effect in the lattice hydrodynamic model, Physica A: Statistical Mechanics and Its Applications, 387, 28, 6952-6958 (2008) · doi:10.1016/j.physa.2008.05.060
[17] Zhu, W. X., A backward looking optimal current lattice model, Communications in Theoretical Physics, 50, 753-756 (2008) · Zbl 1392.90051
[18] Zhu, W.-X.; Chi, E.-X., Analysis of generalized optimal current lattice model for traffic flow, International Journal of Modern Physics C, 19, 5, 727-739 (2008) · Zbl 1153.82327 · doi:10.1142/s0129183108012467
[19] Peng, G.; Lu, W.; He, H., Impact of the traffic interruption probability of optimal current on traffic congestion in lattice model, Physica A: Statistical Mechanics and Its Applications, 425, 27-33 (2015) · Zbl 1400.82158 · doi:10.1016/j.physa.2015.01.045
[20] Peng, G.; Nie, F.; Cao, B.; Liu, C., A driver’s memory lattice model of traffic flow and its numerical simulation, Nonlinear Dynamics, 67, 3, 1811-1815 (2012) · Zbl 1242.90006 · doi:10.1007/s11071-011-0107-2
[21] Tian, J. F.; Jia, B.; Li, X. G.; Gao, Z. Y., Flow difference effect in the lattice hydrodynamic model, Chinese Physics B, 19, 4 (2010)
[22] Tian, J. F.; Yuan, Z. Z.; Jia, B.; Li, M. H.; Jiang, G. J., The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow, Physica A, 391, 19, 4476-4482 (2010)
[23] Cheng, R.; Liu, F.; Ge, H., A new continuum model based on full velocity difference model considering traffic jerk effect, Nonlinear Dynamics, 89, 1, 639-649 (2017) · doi:10.1007/s11071-017-3477-2
[24] Jiang, R.; Wu, Q.-S.; Zhu, Z.-J., A new continuum model for traffic flow and numerical tests, Transportation Research Part B: Methodological, 36, 5, 405-419 (2002) · doi:10.1016/s0191-2615(01)00010-8
[25] Wu, X.; Zhao, X.; Song, H.; Xin, Q.; Yu, S., Effects of the prevision relative velocity on traffic dynamics in the ACC strategy, Physica A: Statistical Mechanics and Its Applications, 515, 192-198 (2019) · Zbl 1514.90108 · doi:10.1016/j.physa.2018.09.172
[26] Jiang, C. T.; Ge, H. X.; Cheng, R. J., Mean-field flow difference model with consideration of on-ramp and off-ramp, Physica A, 513, 465-467 (2019)
[27] Kiselev, A. B.; Nikitin, V. F.; Smirnov, N. N.; Yumashev, M. V., Irregular traffic flow on a ring road, Journal of Applied Mathematics and Mechanics, 64, 4, 627-634 (2000) · Zbl 1074.90515 · doi:10.1016/s0021-8928(00)00089-7
[28] Tang, T.-Q.; Luo, X.-F.; Zhang, J.; Chen, L., Modeling electric bicycle’s lane-changing and retrograde behaviors, Physica A: Statistical Mechanics and Its Applications, 490, 1377-1386 (2018) · doi:10.1016/j.physa.2017.08.107
[29] Lv, F.; Zhu, H.-B.; Ge, H.-X., TDGL and mKdV equations for car-following model considering driver’s anticipation, Nonlinear Dynamics, 77, 4, 1245-1250 (2014) · doi:10.1007/s11071-014-1374-5
[30] Cheng, R.; Wang, Y., An extended lattice hydrodynamic model considering the delayed feedback control on a curved road, Physica A: Statistical Mechanics and Its Applications, 513, 510-517 (2019) · Zbl 1514.90058 · doi:10.1016/j.physa.2018.09.014
[31] Peng, G.; Lu, W.; He, H.; Gu, Z., Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory, Communications in Nonlinear Science and Numerical Simulation, 40, 197-205 (2016) · Zbl 1510.82022 · doi:10.1016/j.cnsns.2016.04.024
[32] Sun, Y.; Ge, H.; Cheng, R., An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy, Physica A: Statistical Mechanics and Its Applications, 521, 752-761 (2019) · Zbl 1514.90097 · doi:10.1016/j.physa.2019.01.092
[33] Song, H.; Ge, H.; Chen, F.; Cheng, R., TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference, Nonlinear Dynamics, 87, 3, 1809-1817 (2017) · doi:10.1007/s11071-016-3154-x
[34] Zhu, W.-X.; Zhang, H. M., Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model, Physica A: Statistical Mechanics and Its Applications, 496, 274-285 (2018) · Zbl 1514.90123 · doi:10.1016/j.physa.2017.12.103
[35] Ou, H.; Tang, T.-Q., An extended two-lane car-following model accounting for inter-vehicle communication, Physica A: Statistical Mechanics and Its Applications, 495, 1, 260-268 (2018) · doi:10.1016/j.physa.2017.12.100
[36] Tang, T.-Q.; Rui, Y.-X.; Zhang, J.; Shang, H.-Y., A cellular automation model accounting for bicycle’s group behavior, Physica A: Statistical Mechanics and Its Applications, 492, 1782-1797 (2018) · Zbl 1514.90099 · doi:10.1016/j.physa.2017.11.097
[37] Nagel, K.; Schreckenberg, M., A cellular automaton model for freeway traffic, Journal De Physique I, 2, 212-229 (1992) · doi:10.1051/jp1:1992277
[38] Moussa, N.; Daoudia, A. K., Numerical study of two classes of cellular automaton models for traffic flow on a two-lane roadway, The European Physical Journal B—Condensed Matter, 31, 3, 413-420 (2003) · doi:10.1140/epjb/e2003-00049-y
[39] Das, S., Cellular automata based traffic model that allows the cars to move with a small velocity during congestion, Chaos, Solitons & Fractals, 44, 4-5, 185-190 (2011) · doi:10.1016/j.chaos.2011.01.012
[40] Chmura, T.; Herz, B.; Knorr, F.; Pitz, T.; Schreckenberg, M., A simple stochastic cellular automaton for synchronized traffic flow, Physica A: Statistical Mechanics and Its Applications, 405, 332-337 (2014) · Zbl 1395.90069 · doi:10.1016/j.physa.2014.03.044
[41] Xue, S. Q.; Jia, B.; Jiang, R., A behaviour based cellular automaton model for pedestrian counter flow, Journal of Statistical Mechanics: Theory and Experiment, 2016, 11, 1742-5468 (2016) · Zbl 1459.82203 · doi:10.1088/1742-5468/2016/11/113204
[42] Cheng, R.; Ge, H.; Wang, J., An extended macro traffic flow model accounting for multiple optimal velocity functions with different probabilities, Physics Letters A, 381, 32, 2608-2620 (2017) · Zbl 1375.90081 · doi:10.1016/j.physleta.2017.06.008
[43] Peng, G. H.; Song, W.; Peng, Y. J.; Wang, S. H., A novel macro model of traffic flow with the consideration of anticipation optimal velocity, Physica A: Statistical Mechanics and Its Applications, 398, 76-82 (2014) · Zbl 1395.90091 · doi:10.1016/j.physa.2013.12.015
[44] Tang, T.-Q.; Huang, H.-J.; Shang, H.-Y., An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests, Physica A: Statistical Mechanics and Its Applications, 468, 322-333 (2017) · doi:10.1016/j.physa.2016.10.092
[45] Mohan, R.; Ramadurai, G., Heterogeneous traffic flow modelling using second-order macroscopic continuum model, Physics Letters A, 381, 3, 115-123 (2017) · Zbl 1377.90017 · doi:10.1016/j.physleta.2016.10.042
[46] Goatin, P.; Rossi, F., A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Communications in Mathematical Sciences, 15, 1, 261-287 (2017) · Zbl 1356.35096 · doi:10.4310/cms.2017.v15.n1.a12
[47] Tang, T. Q.; Huang, H. J.; Wong, S. C.; Gao, Z. Y.; Zhang, Y., A new macro model for traffic flow on a highway with ramps and numerical tests, Communications in Theoretical Physics, 51, 71-78 (2009) · Zbl 1170.90355
[48] Peng, G., A new lattice model of traffic flow with the consideration of individual difference of anticipation driving behavior, Communications In Nonlinear Science and Numerical Simulation, 18, 10, 2801-2806 (2013) · Zbl 1306.90036 · doi:10.1016/j.cnsns.2013.03.007
[49] Peng, G. H.; Cai, X. H.; Liu, C. Q.; Cao, B. F., A new lattice model of traffic flow with the consideration of the driverʼs forecast effects, Physics Letters A, 375, 22, 2153-2157 (2011) · Zbl 1242.90059 · doi:10.1016/j.physleta.2011.04.033
[50] Peng, G. H.; Cai, X. H.; Liu, C. Q.; Tuo, M. X., A new lattice model of traffic flow with the anticipation effect of potential lane changing, Physics Letters A, 376, 4, 447-451 (2012) · Zbl 1255.90033 · doi:10.1016/j.physleta.2011.11.058
[51] Ge, H.-X.; Zheng, P.-J.; Lo, S.-M.; Cheng, R.-J., TDGL equation in lattice hydrodynamic model considering driver’s physical delay, Nonlinear Dynamics, 76, 1, 441-445 (2014) · Zbl 1319.90018 · doi:10.1007/s11071-013-1137-8
[52] Gupta, A. K.; Sharma, S.; Redhu, P., Effect of multi-phase optimal velocity function on jamming transition in a lattice hydrodynamic model with passing, Nonlinear Dynamics, 80, 3, 1091-1108 (2015) · doi:10.1007/s11071-015-1929-0
[53] Nagatani, T., Dynamical jamming transition induced by a car accident in traffic-flow model of a two-lane roadway, Physica A: Statistical Mechanics and Its Applications, 202, 3-4, 449-458 (1994) · doi:10.1016/0378-4371(94)90471-5
[54] Nagatani, T., Self-organization and phase transition in traffic-flow model of a two-lane roadway, Journal of Physics A: Mathematical and General, 26, 17, L781-L787 (1999) · Zbl 0798.90063 · doi:10.1088/0305-4470/26/17/005
[55] Peng, G.; Yang, S.; Xia, D.; Li, X., A novel lattice hydrodynamic model considering the optimal estimation of flux difference effect on two-lane highway, Physica A: Statistical Mechanics and Its Applications, 506, 929-937 (2018) · doi:10.1016/j.physa.2018.05.036
[56] He, J.; Yang, H.; Huang, H.-J.; Tang, T.-Q., Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system, Physica A: Statistical Mechanics and Its Applications, 500, 1-10 (2018) · doi:10.1016/j.physa.2018.02.074
[57] Li, X.; Fang, K.; Peng, G., A new lattice model accounting for multiple optimal current differences’ anticipation effect in two-lane system, Physica A: Statistical Mechanics and Its Applications, 486, 814-826 (2017) · Zbl 1499.90059 · doi:10.1016/j.physa.2017.05.061
[58] Wang, T.; Zhang, J.; Gao, Z.; Zhang, W.; Li, S., Congested traffic patterns of two-lane lattice hydrodynamic model with on-ramp, Nonlinear Dynamics, 88, 2, 1345-1359 (2017) · doi:10.1007/s11071-016-3314-z
[59] Knospe, W.; Santen, L.; Schadschneider, A.; Schreckenberg, M., A realistic two-lane traffic model for highway traffic, Journal of Physics A: Mathematical and General, 35, 15, 3369-3388 (2002) · Zbl 0996.90028 · doi:10.1088/0305-4470/35/15/302
[60] Kaur, R.; Sharma, S., Modeling and simulation of driver’s anticipation effect in a two-lane system on curved road with slope, Physica A: Statistical Mechanics and Its Applications, 499, 110-120 (2018) · Zbl 1514.90067 · doi:10.1016/j.physa.2017.12.101
[61] Sun, F.; Chow, A. H. F.; Lo, S. M.; Ge, H., A two-lane lattice hydrodynamic model with heterogeneous lane changing rates, Physica A: Statistical Mechanics and Its Applications, 511, 389-400 (2018) · Zbl 1514.90095 · doi:10.1016/j.physa.2018.08.012
[62] He, H.-d.; Zhang, C.-y.; Wang, W.-l.; Hao, Y.-y.; Ding, Y., Feedback control scheme for traffic jam and energy consumption based on two-lane traffic flow model, Transportation Research Part D: Transport and Environment, 60, 76-84 (2018) · doi:10.1016/j.trd.2015.11.005
[63] Li, X.-G.; Jia, B.; Gao, Z.-Y.; Jiang, R., A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle, Physica A: Statistical Mechanics and Its Applications, 367, 479-486 (2006) · doi:10.1016/j.physa.2005.11.016
[64] Liu, F.; Cheng, Y., The improved element-free galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels, International Journal of Applied Mechanics, 10, 4 (2018) · doi:10.1142/s1758825118500473
[65] Liu, F.; Wu, Q.; Cheng, Y., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, International Journal of Applied Mechanics, 11, 1 (2019) · doi:10.1142/s1758825119500066
[66] Wang, J.; Sun, F., A hybrid variational multiscale element-free galerkin method for convection-diffusion problems, International Journal of Applied Mechanics, 11, 07 (2019) · doi:10.1142/s1758825119500637
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.