×

Solving ordinary differential equations by LS-SVM. (English) Zbl 07914324

Rad, Jamal Amani (ed.) et al., Learning with fractional orthogonal kernel classifiers in support vector machines. Theory, algorithms and applications. Singapore: Springer. Ind. Appl. Math., 147-170 (2023).
Summary: In this chapter, we propose a machine learning method for solving a class of linear and nonlinear ordinary differential equations (ODEs) which is based on the least squares-support vector machines (LS-SVM) with collocation procedure. One of the most important and practical models in this category is Lane-Emden type equations. By using LS-SVM for solving these types of equations, the solution is expanded based on rational Legendre functions and the LS-SVM formulation is presented. Based on this, the linear problems are solved in dual form and a system of linear algebraic equations is concluded. Finally, by presenting some numerical examples, the results of the current method are compared with other methods. The comparison shows that the proposed method is fast and highly accurate with exponential convergence.
For the entire collection see [Zbl 1530.68039].

MSC:

68T05 Learning and adaptive systems in artificial intelligence
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
33C99 Hypergeometric functions
Full Text: DOI

References:

[1] Abbasbandy, S., Modarrespoor, D., Parand, K., Rad, J.A.: Analytical solution of the transpira-tion on the boundary layer flow and heat transfer over a vertical slender cylinder. Quaestiones Mathematicae 36, 353-380 (2013) · Zbl 1274.76273
[2] Anderson, D., Yunes, N., Barausse, E.: Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories. Phys. Rev. D 94, 104064 (2016)
[3] Aslanov, A.: Determination of convergence intervals of the series solutions of Emden-Fowler equa-tions using polytropes and isothermal spheres. Phys. Lett. A 372, 3555-3561 (2008) · Zbl 1220.35084
[4] Aslanov, A.: A generalization of the Lane-Emden equation. Int. J. Comput. Math. 85, 1709-1725 (2008) · Zbl 1154.65059
[5] Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121-1131 (2009) · Zbl 1221.65197
[6] Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, L.M., Jr.: A new perturbative approach to nonlinear problems. J. Math. Phys. 30, 1447-1455 (1989) · Zbl 0684.34008
[7] Bristeau, M.O., Pironneau, O., Glowinski, R., Periaux, J., Perrier, P.: On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (I) least square formulations and conjugate gradient solution of the continuous problems. Comput. Methods Appl. Mech. Eng. 17, 619-657 (1979) · Zbl 0423.76047
[8] Chandrasekhar, S., Chandrasekhar, S.: An introduction to the study of stellar structure, vol. 2. North Chelmsford, Courier Corporation (1957) · Zbl 0079.23901
[9] Chowdhury, M.S.H., Hashim, I.: Solutions of a class of singular second-order IVPs by Homotopy-perturbation method. Phys. Lett. A 365, 439-447 (2007) · Zbl 1203.65124
[10] Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equations by Homotopy-perturbation method. Nonlinear Anal. Real World Appl. 10, 104-115 (2009) · Zbl 1154.34306
[11] Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273-297 (1995) · Zbl 0831.68098
[12] Dehghan, M., Shakeri, F.: The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 78, 065004 (2008) · Zbl 1159.78319
[13] Dehghan, M., Shakeri, F.: Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13, 53-59 (2008)
[14] Dehghan, M., Tatari, M.: The use of Adomian decomposition method for solving problems in calculus of variations. Math. Probl. Eng. 2006, 1-12 (2006) · Zbl 1200.65050
[15] Emden, R.: Gaskugeln: Anwendungen der mechanischen Warmetheorie auf kosmologische und meteorologische Probleme, BG Teubner (1907) · JFM 38.0952.02
[16] Farzaneh-Gord, M., Rahbari, H.R.: Unsteady natural gas flow within pipeline network, an analytical approach. J. Nat. Gas Sci. Eng. 28, 397-409 (2016)
[17] Guo, B.Y., Shen, J., Wang, Z.Q.: A rational approximation and its applications to differential equa-tions on the half line. J. Sci. Comput. 15, 117-147 (2000) · Zbl 0984.65104
[18] Hadian Rasanan, A.H., Rahmati, D., Gorgin, S., Parand, K.: A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation. New Astron. 75, 101307 (2020)
[19] He, J.H.: Variational approach to the Lane-Emden equation. Appl. Math. Comput. 143, 539-541 (2003) Horedt, G.P.: Polytropes: Applications in Astrophysics and Related Fields. Klawer Academic Pub-lishers, New York (2004) · Zbl 1022.65076
[20] Hossayni, S.A., Rad, J.A., Parand, K., Abbasbandy, S.: Application of the exact operational matrices for solving the Emden-Fowler equations, arising in astrophysics. Int. J. Ind. Math. 7, 351-374 (2015)
[21] Kara, A. H., Mahomed, F. M.: Equivalent lagrangians and the solution of some classes of non-linear equations. Int. J. Non Linear Mechcs. 27, 919-927 (1992) · Zbl 0760.34011
[22] Kara, A.H., Mahomed, F.M.: A note on the solutions of the Emden-Fowler equation. Int. J. Non Linear Mechcs. 28, 379-384 (1993) · Zbl 0786.34001
[23] Kazem, S., Rad, J.A., Parand, K., Abbasbandy, S.: A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions. Zeitschrift für Naturforschung A 66, 591-598 (2011)
[24] Kazem, S., Rad, J.A., Parand, K., Shaban, M., Saberi, H.: The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method. Int. J. Comput. Math. 89, 2240-2258 (2012) · Zbl 1255.65184
[25] Khoury, J., Sakstein, J., Solomon, A.R.: Superfluids and the cosmological constant problem. J. Cosmol. Astropart. Phys. 2018, 024 (2018) · Zbl 1536.83184
[26] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987-1000 (1998)
[27] Lane, H.J.: On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. 2, 57-74 (1870)
[28] Lázaro, M., Santamaría, I., Pérez-Cruz, F., Artés-Rodríguez, A.: Support vector regression for the simultaneous learning of a multivariate function and its derivatives. Neurocomputing 69, 42-61 (2005)
[29] Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1-16 (2003) · Zbl 1022.65078
[30] Liu, Q.X., Liu, J.K., Chen, Y.M.: A second-order scheme for nonlinear fractional oscillators based on Newmark-β algorithm. J. Comput. Nonlinear Dyn. 13, 084501 (2018)
[31] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9, 1-10 (2018)
[32] Malek, A., Beidokhti, R.S.: Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl. Math. Comput. 183, 260-271 (2006) · Zbl 1105.65340
[33] Mall, S., Chakraverty, S.: Chebyshev neural network based model for solving Lane-Emden type equations. Appl. Math. Comput. 247, 100-114 (2014) · Zbl 1338.65206
[34] Mall, S., Chakraverty, S.: Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method. Neurocomputing 149, 975-982 (2015)
[35] Mall, S., Chakraverty, S.: Application of Legendre neural network for solving ordinary differential equations. Appl. Soft Comput. 43, 347-356 (2016)
[36] Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun 141, 268-281 (2001) · Zbl 0991.65065
[37] Marzban, H.R., Tabrizidooz, H.R., Razzaghi, M.: Hybrid functions for nonlinear initial-value prob-lems with applications to Lane-Emden type equations. Phys. Lett. A 372, 5883-5886 (2008) · Zbl 1223.35299
[38] Mehrkanoon, S., Suykens, J.A.: LS-SVM based solution for delay differential equations. J. Phys.: Conf. Ser. 410, 012041 (2013)
[39] Mehrkanoon, S., Falck, T., Suykens, J.A.: Approximate solutions to ordinary differential equations using least squares support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 23, 1356-1367 (2012)
[40] Omidi, M., Arab, B., Hadian Rasanan, A.H., Rad, J.A., Parand, K.: Learning nonlinear dynamics with behavior ordinary/partial/system of the differential equations: looking through the lens of orthogonal neural networks. Eng. Comput. 1-20 (2021)
[41] Pakniyat, A., Parand, K., Jani, M.: Least squares support vector regression for differential equations on unbounded domains. Chaos Solitons Fract. 151, 111232 (2021) · Zbl 1498.34038
[42] Parand, K., Nikarya, M., Rad, J.A., Baharifard, F.: A new reliable numerical algorithm based on the first kind of Bessel functions to solve Prandtl-Blasius laminar viscous flow over a semi-infinite flat plate. Zeitschrift für Naturforschung A 67 665-673 (2012)
[43] Parand, K., Khaleqi, S.: The rational Chebyshev of second kind collocation method for solving a class of astrophysics problems. Eur. Phys. J. Plus 131, 1-24 (2016)
[44] Parand, K., Pirkhedri, A.: Sinc-collocation method for solving astrophysics equations. New Astron. 15, 533-537 (2010)
[45] Parand, K., Rad, J.A.: Exp-function method for some nonlinear PDE’s and a nonlinear ODE’s. J. King Saud Univ.-Sci. 24, 1-10 (2012)
[46] Parand, K., Razzaghi, M.: Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys. Scr. 69, 353-357 (2004) · Zbl 1063.65146
[47] Parand, K., Shahini, M., Dehghan, M.: Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type. J. Comput. Phys. 228, 8830-8840 (2009) · Zbl 1177.65100
[48] Parand, K., Dehghan, M., Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys. Commun. 181, 1096-1108 (2010) · Zbl 1216.65098
[49] Parand, K., Abbasbandy, S., Kazem, S., Rad, J.A.: A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 4250-4258 (2011) · Zbl 1222.65150
[50] Parand, K., Nikarya, M., Rad, J.A.: Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method. Celest. Mech. Dyn. Astron. 116, 97-107 (2013)
[51] Parand, K., Hossayni, S.A., Rad, J.A.: An operation matrix method based on Bernstein polynomials for Riccati differential equation and Volterra population model. Appl. Math. Model. 40, 993-1011 (2016) · Zbl 1446.65210
[52] Parand, K., Lotfi, Y., Rad, J.A.: An accurate numerical analysis of the laminar two-dimensional flow of an incompressible Eyring-Powell fluid over a linear stretching sheet. Eur. Phys. J. Plus 132, 1-21 (2017)
[53] Ramos, J.I.: Linearization techniques for singular initial-value problems of ordinary differential equations. Appl. Math. Comput. 161, 525-542 (2005) · Zbl 1061.65061
[54] Ramos, J.I.: Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. Chaos Solitons Fract. 38, 400-408 (2008) · Zbl 1146.34300
[55] Rodrigues, C., Simoes, F.M., da Costa, A.P., Froio, D., Rizzi, E.: Finite element dynamic analysis of beams on nonlinear elastic foundations under a moving oscillator. Eur. J. Mech. A Solids 68, 9-24 (2018) · Zbl 1406.74643
[56] Shawagfeh, N.T.: Nonperturbative approximate solution for Lane-Emden equation. J. Math. Phys. 34, 4364-4369 (1993) · Zbl 0780.34007
[57] Singh, O.P., Pandey, R.K., Singh, V.K.: An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified Homotopy analysis method. Comput. Phys. Commun. 180, 1116-1124 (2009) · Zbl 1198.65250
[58] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, NJ (2002) · Zbl 1017.93004
[59] Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998) · Zbl 0935.62007
[60] Wazwaz, A.M.: A new algorithm for solving differential equations of Lane-Emden type. Appl. Math. Comput. 118, 287-310 (2001) · Zbl 1023.65067
[61] Wazwaz, A.M.: The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 173, 165-176 (2006) · Zbl 1089.65112
[62] Wood, D.O.: Monographs on physics. In: The Emission of Electricity from Hot Bodies. Longmans, Green and Company (1921)
[63] Yıldırım, A., Öziş, T.: Solutions of singular IVPs of Lane-Emden type by Homotopy perturbation method. Phys. Lett. A 369, 70-76 (2007) · Zbl 1209.65120
[64] Yıldırım, A., Öziş, T.: Solutions of singular IVPs of Lane-Emden type by the variational iteration method. Nonlinear Anal. Theory Methods Appl. 70, 2480-2484 (2009) · Zbl 1162.34005
[65] Yousefi, S.A.: Legendre wavelets method for solving differential equations of Lane-Emden type. Appl. Math. Comput. 181, 1417-1422 (2006) · Zbl 1105.65080
[66] Yüzbaşı, Ş, Sezer, M.: An improved Bessel collocation method with a residual error function to solve a class of Lane-Emden differential equations. Math. Comput. Model. 57, 1298-1311 (2013)
[67] Zhang, B.Q., Wu, Q.B., Luo, X.G.: Experimentation with two-step Adomian decomposition method to solve evolution models. Appl. Math. Comput. 175, 1495-1502 (2006) · Zbl 1093.65100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.