×

Structures of quasi-graphs and \(\omega \)-limit sets of quasi-graph maps. (English) Zbl 1366.37102

Summary: An arcwise connected compact metric space \( X\) is called a quasi-graph if there is a positive integer \( N\) with the following property: for every arcwise connected subset \( Y\) of \( X\), the space \( \overline {Y}-Y\) has at most \( N\) arcwise connected components. If a quasi-graph \( X\) contains no Jordan curve, then \( X\) is called a quasi-tree. The structures of quasi-graphs and the dynamics of quasi-graph maps are investigated in this paper. More precisely, the structures of quasi-graphs are explicitly described; some criteria for \( \omega \)-limit points of quasi-graph maps are obtained; for every quasi-graph map \( f\), it is shown that the pseudo-closure of \( R(f)\) in the sense of arcwise connectivity is contained in \( \omega (f)\); it is shown that \( \overline {P(f)}=\overline {R(f)}\) for every quasi-tree map \( f\). Here \( P(f)\), \( R(f)\) and \( \omega (f)\) are the periodic point set, the recurrent point set and the \( \omega \)-limit set of \( f\), respectively. These extend some well-known results for interval dynamics.

MSC:

37E25 Dynamical systems involving maps of trees and graphs
54H20 Topological dynamics (MSC2010)
Full Text: DOI

References:

[1] AHNO G. Acosta, R. Hernandez-Gutierez, I. Nagmouchi and P. Oprocha, Periodic points and transitivity on dendrites, arXiv:1312.7426[math. DS] (2013).
[2] Alsed{\`“a}, Llu{\'”{\i }}s; Llibre, Jaume; Misiurewicz, Micha{\l }, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics 5, xvi+415 pp. (2000), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0963.37001 · doi:10.1142/4205
[3] Block, L. S.; Coppel, W. A., Dynamics in one dimension, Lecture Notes in Mathematics 1513, viii+249 pp. (1992), Springer-Verlag, Berlin · Zbl 0746.58007
[4] Block, Louis; Coven, Ethan M., \( \omega \)-limit sets for maps of the interval, Ergodic Theory Dynam. Systems, 6, 3, 335-344 (1986) · Zbl 0613.58024 · doi:10.1017/S0143385700003539
[5] Blokh, A. M., On transitive mappings of one-dimensional branched manifolds. Differential-difference equations and problems of mathematical physics (Russian), 3-9, 131 (1984), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev
[6] Blokh, A. M., Dynamical systems on one-dimensional branched manifolds. I, Teor. Funktsi\u \i Funktsional. Anal. i Prilozhen.. J. Soviet Math., 48, 5, 500-508 (1990) · Zbl 0711.58024 · doi:10.1007/BF01095616
[7] Blokh, A. M., Dynamical systems on one-dimensional branched manifolds. II, Teor. Funktsi\u \i Funktsional. Anal. i Prilozhen.. J. Soviet Math., 48, 6, 668-674 (1990) · Zbl 0701.58022 · doi:10.1007/BF01094721
[8] Blokh, A. M., Dynamical systems on one-dimensional branched manifolds. III, Teor. Funktsi\u \i Funktsional. Anal. i Prilozhen.. J. Soviet Math., 49, 2, 875-883 (1990) · Zbl 0701.58022 · doi:10.1007/BF02205632
[9] Blokh, A. M., Spectral decomposition, periods of cycles and a conjecture of M. Misiurewicz for graph maps. Ergodic theory and related topics, III, G\"ustrow, 1990, Lecture Notes in Math. 1514, 24-31 (1992), Springer, Berlin · Zbl 0770.58010 · doi:10.1007/BFb0097525
[10] Blokh, Alexander M., The “spectral” decomposition for one-dimensional maps. Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.) 4, 1-59 (1995), Springer, Berlin · Zbl 0828.58009
[11] Blokh, Alexander, Recurrent and periodic points in dendritic Julia sets, Proc. Amer. Math. Soc., 141, 10, 3587-3599 (2013) · Zbl 1326.37030 · doi:10.1090/S0002-9939-2013-11633-3
[12] Blokh, Alexander; Bruckner, A. M.; Humke, P. D.; Sm{\'{\i }}tal, J., The space of \(\omega \)-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 348, 4, 1357-1372 (1996) · Zbl 0860.54036 · doi:10.1090/S0002-9947-96-01600-5
[13] Chinen, Naotsugu, Sets of all \(\omega \)-limit points for one-dimensional maps, Houston J. Math., 30, 4, 1055-1068 (electronic) (2004) · Zbl 1126.37310
[14] Chu, Hsin; Xiong, Jin Cheng, A counterexample in dynamical systems of the interval, Proc. Amer. Math. Soc., 97, 2, 361-366 (1986) · Zbl 0634.58021 · doi:10.2307/2046532
[15] Coven, Ethan M.; Hedlund, G. A., \( \bar P=\bar R\) for maps of the interval, Proc. Amer. Math. Soc., 79, 2, 316-318 (1980) · Zbl 0433.54032 · doi:10.2307/2043258
[16] Hoehn, Logan; Mouron, Christopher, Hierarchies of chaotic maps on continua, Ergodic Theory Dynam. Systems, 34, 6, 1897-1913 (2014) · Zbl 1351.37189 · doi:10.1017/etds.2013.32
[17] Llibre, Jaume; Misiurewicz, Micha{\l }, Horseshoes, entropy and periods for graph maps, Topology, 32, 3, 649-664 (1993) · Zbl 0787.54021 · doi:10.1016/0040-9383(93)90014-M
[18] Mai, Jie-Hua; Shao, Song, \( \overline R=R\cup \overline P\) for graph maps, J. Math. Anal. Appl., 350, 1, 9-11 (2009) · Zbl 1151.37313 · doi:10.1016/j.jmaa.2008.09.006
[19] Mai, Jiehua; Shi, Enhui, \( \overline R=\overline P\) for maps of dendrites \(X\) with \({\rm Card}({\rm End}(X))<c\), Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19, 4, 1391-1396 (2009) · Zbl 1168.37310 · doi:10.1142/S021812740902372X
[20] Mai, Jiehua; Sun, Taixiang, The \(\omega \)-limit set of a graph map, Topology Appl., 154, 11, 2306-2311 (2007) · Zbl 1115.37044 · doi:10.1016/j.topol.2007.03.008
[21] Mai, Jie-hua; Sun, Tai-xiang, Non-wandering points and the depth for graph maps, Sci. China Ser. A, 50, 12, 1818-1824 (2007) · Zbl 1136.37007 · doi:10.1007/s11425-007-0139-8
[22] Munkres, James R., Topology: a first course, xvi+413 pp. (1975), Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0306.54001
[23] Nadler, Sam B., Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics 158, xiv+328 pp. (1992), Marcel Dekker, Inc., New York · Zbl 0757.54009
[24] Nitecki, Zbigniew, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc., 80, 3, 511-514 (1980) · Zbl 0478.58019 · doi:10.2307/2043751
[25] Nitecki, Zbigniew, Topological dynamics on the interval. Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math. 21, 1-73 (1982), Birkh\"auser, Boston, Mass. · Zbl 0506.54035
[26] Sarkovs{\cprime }ki{\u \i }, O. M., Fixed points and the center of a continuous mapping of the line into itself, Dopovidi Akad. Nauk Ukra\"\i n. RSR, 1964, 865-868 (1964) · Zbl 0173.25601
[27] Sarkovs{\cprime }ki{\u \i }, O. M., Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. \u Z., 16, 61-71 (1964) · Zbl 0122.17504
[28] Sarkovs{\cprime }ki{\u \i }, O. M., On a theorem of G. D. Birkhoff, Dopov\=\i d\=\i Akad. Nauk Ukra\"\i n. RSR Ser. A, 1967, 429-432 (1967) · Zbl 0152.21702
[29] Spitalsk{\'y}, Vladim{\'{\i }}r, Transitive dendrite map with infinite decomposition ideal, Discrete Contin. Dyn. Syst., 35, 2, 771-792 (2015) · Zbl 1351.37175 · doi:10.3934/dcds.2015.35.771
[30] Xiong, Jin Cheng; Ye, Xiang Dong; Zhang, Zhi Qiang; Huang, Jun, Some dynamical properties of continuous maps on the Warsaw circle, Acta Math. Sinica (Chin. Ser.), 39, 3, 294-299 (1996) · Zbl 0870.54042
[31] Ye, Xiang Dong, The centre and the depth of the centre of a tree map, Bull. Austral. Math. Soc., 48, 2, 347-350 (1993) · Zbl 0801.54030 · doi:10.1017/S0004972700015768
[32] Young, Lai Sang, A closing lemma on the interval, Invent. Math., 54, 2, 179-187 (1979) · Zbl 0425.58016 · doi:10.1007/BF01408935
[33] Zeng, Fanping; Mo, Hong; Guo, Wenjing; Gao, Qiju, \( \omega \)-limit set of a tree map, Northeast. Math. J., 17, 3, 333-339 (2001) · Zbl 1026.37032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.