×

Constructing flag-transitive incidence structures. (English) Zbl 1523.05015

Summary: The aim of this research is to develop efficient techniques to construct flag-transitive incidence structures. In this paper we describe those techniques, present the construction results and take a closer look at how some types of flag-transitive incidence structures relate to arctransitive graphs.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures

Software:

Magma
Full Text: DOI

References:

[1] M. Aschbacher, Finite geometries of type \(C_3\) with flag-transitive groups, Geom. Dedicata 16 (1984), 195-200. · Zbl 0548.51005 · doi:10.1007/BF00146830
[2] L. M. Batten and A. Beutelspacher, The Theory of Finite Linear Spaces, Cambridge University Press, Cambridge, 1992. · Zbl 0806.51001 · doi:10.1017/CBO9780511666919
[3] W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma functions, Edition 2:16, 2010 (electronic). · Zbl 0964.68595
[4] S. Braić, J. Mandić and T. Vučičić, Flag-transitive block designs with automorphism group \(S_n\) wr \(S_2\), Discrete Math. 341 (2018), 2220-2230. · Zbl 1388.05196 · doi:10.1016/j.disc.2018.04.026
[5] S. Braić, J. Mandić, A. Šubašić, T. Vojković and T. Vučičić, Groups \(S_n\) × \(S_m\) in construction of flag-transitive block designs, Glas. Mat. Ser. III 56(76) (2021), 225-240. · Zbl 1482.05345 · doi:10.3336/gm.56.2.02
[6] F. Buekenhout, A. Delandtsheer and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A. 49 (1988), 268-293. · Zbl 0658.20001 · doi:10.1016/0097-3165(88)90056-8
[7] C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256. · Zbl 0217.02403 · doi:10.2307/1995785
[8] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B. 42 (1987), 196-211. · Zbl 0583.05032 · doi:10.1016/0095-8956(87)90040-2
[9] M. D. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006), 255-294. · Zbl 1089.05032 · doi:10.1007/s10801-006-7397-3
[10] M. D. Conder, and M. Morton, Classification of trivalent symmetric graphs of small order, Australas. J. Combin. 11 (1995), 139-150. · Zbl 0829.05034
[11] M. D. Conder, and R. Nedela, A refined classification of symmetric cubic graphs, J. Algebra 322 (2009), 722-740. · Zbl 1183.05034 · doi:10.1016/j.jalgebra.2009.03.011
[12] M. D. Conder, and G. Verret, Edge-transitive graphs of small order and the answer to a 1967 question by Folkman, Algebr. Comb. 2 (2019), 1275-1284. · Zbl 1428.05326 · doi:10.5802/alco.82
[13] J. Conway, and A. Ryba, The Pascal mysticum demystified, Math. Intelligencer 34 (2012), no.3, 4-8. · Zbl 1262.51003 · doi:10.1007/s00283-012-9301-4
[14] H. S. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950), 413-455. · Zbl 0040.22803 · doi:10.1090/S0002-9904-1950-09407-5
[15] D. Z. Djokovic and G. L. Miller, Groups Acting on Regular Graphs and Group Amalgams, in: Technical Report TR24, University of Rochester, Department of Computer Science, Rochester, 1978.
[16] C. Godsil and G. Royle, Arc-Transitive Graphs, in: Algebraic Graph Theory, Springer, New York, 2001. · Zbl 0968.05002 · doi:10.1007/978-1-4613-0163-9
[17] H. Gropp, Configurations and their realization, Discrete Math. 174 (1997), 137-151. · Zbl 0892.51001 · doi:10.1016/S0012-365X(96)00327-5
[19] F. W. Levi, Finite geometrical systems: six public lectures, University of Calcutta, Calcutta, 1942. · Zbl 0060.32304
[20] P. Potočnik and S. E. Wilson, Recipes for edge-transitive tetravalent graphs, Art Discrete Appl. Math. 3(1) (2020), Paper No. 1.08. · Zbl 1441.05109 · doi:10.26493/2590-9770.1269.732
[21] C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B. 58 (1993), 299-318. · Zbl 0793.05071 · doi:10.1006/jctb.1993.1046
[22] C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B. 59 (1993), 245-266. · Zbl 0793.05072 · doi:10.1006/jctb.1993.1068
[23] T. Reye, Geometrie der Lage I. 2nd ed., C. Rumpler, Hannover, 1877. · JFM 24.0582.04
[24] T. Reye, Das Problem der Configurationen, Acta Math. 1(1) (1882), 93-96. · JFM 14.0546.02 · doi:10.1007/BF02391837
[25] J. De Saedeleer, D. Leemans, M. Mixer and T. Pisanski, Core-free, rank two coset geometries from edge-transitive bipartite graphs, Math. Slovaca 64 (2014), 991-1006. · Zbl 1349.51001 · doi:10.2478/s12175-014-0253-3
[26] J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, Bull. Soc. Math. Belg. 8 (1956), 46-81. · Zbl 0072.38202
[27] R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B. 58 (1993), 197-216. · Zbl 0793.05074 · doi:10.1006/jctb.1993.1037
[28] P.-H. Zieschang, Flag transitive automorphism groups of 2-designs with \((r\), λ) = 1, J. Algebra 118 (1988), 369-375. · Zbl 0661.20001 · doi:10.1016/0021-8693(88)90027-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.