×

Weyl modules and Weyl functors for hyper-map algebras. (English) Zbl 1470.17014

Given a Lie algebra \(\mathfrak g\) over a field \(\mathbb K\), denote its universal enveloping algebra by \(U(\mathfrak g)\). An integral form of \(U(\mathfrak g)\) is a subring \(U_{\mathbb Z}(\mathfrak g)\) of \(U(\mathfrak g)\) such that \(\mathbb K \otimes_{\mathbb Z} U_{\mathbb Z} (\mathfrak g) \cong U(\mathfrak g)\). Several classes of Lie algebras are known to admit integral forms for their universal enveloping algebras, in particular, certain map algebras.
A map algebra is a Lie algebra constructed in the following way. Let \(\mathbb K\) be a field, \(\mathfrak g\) be a Lie algebra over \(\mathbb K\), and \(A\) be an associative, commutative, unital \(\mathbb K\)-algebra. Endow the \(\mathbb K\)-vector space \(\mathfrak g \otimes_{\mathbb K} A\) with the unique Lie bracket that extends: \[ [x \otimes a, y \otimes b] = [x, y] \otimes ab \quad \textup{ for all } x, y \in \mathfrak g, \ a, b \in A. \] Lie algebras obtained as above are known as map algebras and denoted by \(\mathfrak g_A\).
When the field \(\mathbb K\) is algebraically closed, has characteristic zero, the Lie algebra \(\mathfrak g\) is finite dimensional, simple, and the algebra \(A\) is finitely generated, then \(U(\mathfrak g_A)\) admits an integral form. In these cases, for each field \(\mathbb F\) one defines the \(\mathbb F\)-hyperalgebra of \(\mathfrak g_A\) to be \(U_{\mathbb F} (\mathfrak g_A) := \mathbb F \otimes_{\mathbb Z} U_{\mathbb Z} (\mathfrak g_A)\). In this paper, the authors study certain classes of modules for these hyperalgebras, which are also called hyper-map algebras.
The main class of modules studied in this paper is the one consisting of global Weyl modules (see Definition 2.8). The authors obtain generators and relations for these modules in Proposition 2.10, prove that they satisfy certain universal properties in Theorem 2.13, and compute their endomorphisms in Section 2.7. Amongst other things, the authors also define Weyl functors in Definition 2.11 and prove that they preserve finite-dimensionality in Theorem 2.14.

MSC:

17B65 Infinite-dimensional Lie (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
14L17 Affine algebraic groups, hyperalgebra constructions

References:

[1] Bagci, I., Calixto, L. and Macedo, T., Weyl Modules and Weyl Functors for Lie Superalgebras, Algebras Represent. Theory22 (2019) 723-756. · Zbl 1447.17016
[2] Bagci, I. and Chamberlin, S., Integral bases for the universal enveloping algebras of map superalgebras, J. Pure Appl. Algebra218(8) (2014) 1563-1576. · Zbl 1376.17015
[3] Bautista, R., Gabriel, P., Roiter, A. V. and Salmern, L., Representation-finite algebras and muitiplicative bases, Invent. Math.81 (1985) 217-285. · Zbl 0575.16012
[4] Beck, J. and Nakajima, H., Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J.123(2) (2004) 335-402. · Zbl 1062.17006
[5] Bennett, M., Chari, V., Greenstein, J. and Manning, N., On homomorphisms between global Weyl modules, Represent. Theory15 (2011) 733-752. · Zbl 1250.17010
[6] Bianchi, A. and Chamberlin, S., Finite-dimensional representations of hyper multicurrent and multiloop algebras, Algebr. Represent. Theor. (2020), https://doi.org/10.1007/s10468-020-09955-z. · Zbl 1477.17056
[7] Bianchi, A., Macedo, T. and Moura, A., On Demazure and local Weyl modules for affine hyperalgebras, Pacific J. Math.274(2) (2015) 257-303. · Zbl 1394.17050
[8] Bianchi, A. and Moura, A., Finite-dimensional representations of twisted hyper-loop algebras, Comm. Algebra42(7) (2014) 3147-3182. · Zbl 1330.17026
[9] Calixto, L., Lemay, J. and Savage, A., Weyl modules for Lie superalgebras, Proc. Amer. Math. Soc.147 (2019) 3191-3207. · Zbl 1467.17014
[10] Chamberlin, S., Integral bases for the universal enveloping algebras of map algebras, J. Algebra377(1) (2013) 232-249. · Zbl 1293.17013
[11] Chari, V., Integrable representations of affine Lie-algebras, Invent. Math.85 (1986) 317-335. · Zbl 0603.17011
[12] Chari, V., Fourier, G. and Khandai, T., A categorical approach to Weyl modules, Transform. Groups15(3) (2010) 517-549. · Zbl 1245.17004
[13] Chari, V., Fourier, G. and Senesi, P., Weyl modules for the twisted loop algebras, J. Algebra319(12) (2008) 5016-5038. · Zbl 1151.17002
[14] Chari, V. and Greenstein, J., Current algebras, highest weight categories and quivers, Adv. Math.216(2) (2007) 811-840. · Zbl 1222.17010
[15] Chari, V., Ion, B. and Kus, D., Weyl modules for the hyperspecial current algebra, Int. Math. Res. Not.2015(15) (2015) 6470-6515. · Zbl 1376.17035
[16] Chari, V., Kus, D. and Odell, M., Borelde-Siebenthal pairs, global Weyl modules and Stanley-Reisner rings, Math. Z.290(12) (2018) 649-681. · Zbl 1448.17010
[17] Chari, V. and Loktev, S., Weyl, Demazure and fusion modules for the current algebra os \(\mathfrak{s} \mathfrak{l}_{r + 1} \), Adv. Math.207 (2006) 928-960. · Zbl 1161.17318
[18] Chari, V. and Pressley, A., Weyl modules for classical and quantum affine algebras, Represent. Theory5 (2001) 191-223. · Zbl 0989.17019
[19] Feigin, B. and Loktev, S., Multi-dimensional Weyl modules and symmetric functions, Comm. Math. Phys.251 (2004) 427-445. · Zbl 1100.17005
[20] Feigin, E. and Makedonskyi, I., Weyl modules for osp(1; 2) and nonsymmetric Macdonald polynomials, Math. Res. Lett.24(3) (2017) 741-766. · Zbl 1416.17013
[21] Fourier, G., Weyl modules and Levi subalgebras, J. Lie Theory24(2) (2014) 503-527. · Zbl 1321.17017
[22] Fourier, G., Khandai, T., Kus, D. and Savage, A., Local Weyl modules for equivariant map algebras with free abelian group actions, J. Algebra350 (2012) 386-404. https://doi.org/10.1016/j.jalgebra.2011.10.018 · Zbl 1268.17022
[23] Fourier, G. and Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math.211(2) (2007) 566-593. · Zbl 1114.22010
[24] Fourier, G., Manning, N. and Senesi, P., Global Weyl modules for the twisted loop algebra, Abh. Math. Semin. Univ. Hambg.83 (2011) 53-82. · Zbl 1297.17006
[25] Fourier, G., Manning, N. and Senesi, P., Global Weyl modules for equivariant map algebras, Int. Math. Res. Not.2015 (2015) 1794-1847. · Zbl 1330.17027
[26] Garland, H., The arithmetic theory of loop algebras, J. Algebra53(2) (1978) 480-551. · Zbl 0383.17012
[27] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, , Vol. 9 (Springer Science and Business Media, 1972). · Zbl 0254.17004
[28] Jakelić, D. and Moura, A., Finite-dimensional representations of hyper loop algebras, Pacific J. Math.233(2) (2007) 371-402. · Zbl 1211.17008
[29] Kashiwara, M., On level-zero representations of quantized affine algebras, Duke Math. J.112(1) (2002) 117-175. · Zbl 1033.17017
[30] Kostant, B., Groups over \(\Bbb Z\), algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math.9 (1966) 90-98. · Zbl 0199.06903
[31] Lau, M., Representations of multiloop Lie algebras, Pacific J. Math.245(1) (2010) 167-184. · Zbl 1237.17012
[32] Mitzman, D., Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras, , Vol. 40 (American Mathematical Society, Providence RI, 1985). · Zbl 0572.17009
[33] Naoi, K., Weyl modules, Demazure modules and finite crystals for non-simply laced type, Adv. Math.229(2) (2012) 875-934. · Zbl 1305.17009
[34] Rao, S. E., On representations of loop algebras, Comm. Algebra21 (1993) 2131-2153. · Zbl 0777.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.