×

Steady flow of a second-grade fluid in an annulus with porous walls. (English) Zbl 1151.76005

Summary: An exact solution of an incompressible second-grade fluid for flow between two coaxial cylinders with porous walls is given. It is assumed that the inner cylinder is rotating with a constant angular velocity and the outer one is at rest. The solution is expressed in terms of confluent hypergeometric functions and is valid for all values of the cross-Reynolds number and elastic number. The solutions for \( - 2, +\infty \), and \( - \infty \) values of cross-Reynolds number are obtained, and a comparison with those for Newtonian’s fluids is given. Furthermore, the torque exerted by the fluid on the inner cylinder is calculated. It is shown that the moment coefficient depends on the cross-Reynolds number, elastic number, and the ratio of radii of the cylinders. The variation of the moment coefficient with these numbers is discussed.

MSC:

76A05 Non-Newtonian fluids
76S05 Flows in porous media; filtration; seepage
76U05 General theory of rotating fluids
Full Text: DOI

References:

[1] A. S. Berman, “Laminar flow in channels with porous walls,” Journal of Applied Physics, vol. 24, no. 9, pp. 1232-1235, 1953. · Zbl 0050.41101 · doi:10.1063/1.1721476
[2] A. S. Berman, “Laminar flow in an annulus with porous walls,” Journal of Applied Physics, vol. 29, no. 1, pp. 71-75, 1958. · Zbl 0080.18903 · doi:10.1063/1.1722948
[3] S. W. Yaun, “Further investigation of laminar flow in channels with porous walls,” Journal of Applied Physics, vol. 27, no. 3, pp. 267-269, 1956. · Zbl 0072.42704 · doi:10.1063/1.1722355
[4] J. N. Kapur and S. Goel, “Flow of a non-Newtonian fluid between rotating cylinders with suction and injection,” Physics of Fluids, vol. 6, no. 5, pp. 626-631, 1963. · Zbl 0113.40503 · doi:10.1063/1.1706791
[5] S. P. Mishra and J. S. Roy, “Laminar elasticoviscous flow in an annulus with porous walls,” Physics of Fluids, vol. 10, no. 11, pp. 2300-2304, 1967. · doi:10.1063/1.1762035
[6] S. P. Mishra and J. S. Roy, “Flow of elasticoviscous liquid between rotating cylinders with suction and injection,” Physics of Fluids, vol. 11, no. 10, pp. 2074-2081, 1968. · Zbl 0172.52501 · doi:10.1063/1.1691786
[7] K. R. Rajagopal and P. N. Kaloni, “Some remarks on boundary conditions for flows of fluids of the differential type,” in Continuum Mechanics and Its Applications, G. A. C. Graham and S. K. Malik, Eds., pp. 935-942, Hemisphere, New York, NY, USA, 1989. · Zbl 0086.27502
[8] K. Walters, “Relation between Coleman-Noll, Rivlin-Ericksen, Green-Rivlin and Oldroyd fluids,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 4, pp. 592-600, 1970. · Zbl 0202.25701 · doi:10.1007/BF01587688
[9] J. E. Dunn and R. L. Fosdick, “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade,” Archive for Rational Mechanics and Analysis, vol. 56, no. 3, pp. 191-252, 1974. · Zbl 0324.76001 · doi:10.1007/BF00280970
[10] J. E. Dunn and K. R. Rajagopal, “Fluids of differential type: critical review and thermodynamic analysis,” International Journal of Engineering Science, vol. 33, no. 5, pp. 689-729, 1995. · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[11] K. R. Rajagopal, “Flow of viscoelastic fluids between rotating disks,” Theoretical and Computational Fluid Dynamics, vol. 3, no. 4, pp. 185-206, 1992. · Zbl 0747.76018 · doi:10.1007/BF00417912
[12] R. L. Fosdick and K. R. Rajagopal, “Anomalous features in the model of “second order fluids”,” Archive for Rational Mechanics and Analysis, vol. 70, no. 2, pp. 145-152, 1979. · Zbl 0427.76006 · doi:10.1007/BF00250351
[13] K. R. Rajagopal, “On boundary conditions for fluids of the differential type,” in Navier-Stokes Equations and Related Nonlinear Problems, A. Sequiera, Ed., pp. 273-278, Plenum Press, New York, NY, USA, 1995. · Zbl 0086.27502
[14] K. R. Frater, “On the solution of some boundary value problems arising in elastico-viscous fluid mechanics,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, no. 1, pp. 134-137, 1970. · Zbl 0185.54102 · doi:10.1007/BF01594990
[15] M. E. Erdo\ugan and C. E. \DImrak, “On the steady flow of a second-grade fluid between two coaxial porous cylinders,” Mathematical Problems in Engineering, vol. 2007, Article ID 42651, p. 11 pages, 2007. · Zbl 1141.76007 · doi:10.1155/2007/42651
[16] M. E. Erdo\ugan and C. E. \DImrak, “The effects of the side walls on the flow of a second grade fluid in ducts with suction and injection,” International Journal of Non-Linear Mechanics, vol. 42, no. 5, pp. 765-772, 2007. · doi:10.1016/j.ijnonlinmec.2007.03.001
[17] N. Roy, “Steady circulatory flow about the rotating circular cylinder with uniformly distributed suction at the surface,” International Journal of Non-Linear Mechanics, vol. 19, no. 3, pp. 235-243, 1984. · Zbl 0576.76008 · doi:10.1016/0020-7462(84)90010-6
[18] I. Christie, K. R. Rajagopal, and A. Z. Szeri, “Flow of a non-Newtonian fluid between eccentric rotating cylinders,” International Journal of Engineering Science, vol. 25, no. 8, pp. 1029-1047, 1987. · Zbl 0616.76006 · doi:10.1016/0020-7225(87)90095-4
[19] F. Mollica and K. R. Rajagopal, “Secondary flows due to axial shearing of a third grade fluid between two eccentrically placed cylinders,” International Journal of Engineering Science, vol. 37, no. 4, pp. 411-429, 1999. · Zbl 1210.76017 · doi:10.1016/S0020-7225(98)00057-3
[20] S. Özer and E. S. \cSuhubi, “Flow of a second grade fluid through a cylindrical permeable tube,” Applied Mathematics and Computation, vol. 179, no. 2, pp. 672-687, 2006. · Zbl 1101.76005 · doi:10.1016/j.amc.2005.12.008
[21] R. S. Rivlin and J. L. Ericksen, “Stress-deformation relations for isotropic materials,” Journal of Rational Mechanics and Analysis, vol. 4, pp. 323-425, 1955. · Zbl 0086.27502
[22] M. E. Erdo\ugan and C. E. \DImrak, “An exact solution of the governing equation of a fluid of second-grade for three-dimensional vortex flow,” International Journal of Engineering Science, vol. 43, no. 8-9, pp. 721-729, 2005. · Zbl 1211.76006 · doi:10.1016/j.ijengsci.2004.12.011
[23] M. M. Denn and K. C. Penteous, “Elastic effect in flow of viscoelastic liquids,” Chemical Engineering Journal, vol. 2, no. 4, pp. 280-286, 1971. · doi:10.1016/0300-9467(71)85007-4
[24] K. R. Rajagopal and A. S. Gupta, “An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate,” Meccanica, vol. 19, no. 2, pp. 158-160, 1984. · Zbl 0086.27502
[25] R. L. Fosdick and B. Bernstein, “Nonuniqueness of second-order fluids under steady radial flow in annuli,” International Journal of Engineering Science, vol. 7, no. 6, pp. 555-569, 1969. · Zbl 0198.29801 · doi:10.1016/0020-7225(69)90011-1
[26] T. N. G. Abbott and K. Waltes, “Rheometrical flow systems part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations,” Journal of Fluid Mechanics, vol. 40, no. 1, pp. 205-213, 1970. · Zbl 0184.52102 · doi:10.1017/S0022112070000125
[27] L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, New York, NY, USA, 1960. · Zbl 0086.27502
[28] M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions, New York, NY, USA, Dover, 1965. · Zbl 0086.27502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.