×

Strong structural controllability based on leader-follower framework. (English) Zbl 07903280

Summary: In this paper, the strong structural controllability of the leader-follower framework is discussed. Firstly, the authors analyze different edge augmentation methods to preserve the strong structural controllability of the path-bud topology. The following four cases are considered: Adding edges from the path to the bud; adding edges from the bud to the path; adding the reverse or forward edges to the path or bud; and adding both the reverse and forward edges to the path or bud. Then sufficient conditions are derived for the strong structural controllability of the new topologies which are generated by adding different edges. In addition, it is proved that \(\mathrm{rank}[A\,\,\,B]=n\) is a necessary condition for the strong structural controllability. Finally, three examples are given to verify the effectiveness of the main results.

MSC:

93B05 Controllability
93B24 Topological methods
Full Text: DOI

References:

[1] Ji Z J, Lin H, and Lee T H, A graph theory based characterization of controllability for multi-agent systems with fixed topology, Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008, 5262-5267.
[2] Godsil, C.; Severini, S., Control by quantum dynamics on graphs, Physical Review A, 81, 5, 052316 (2010) · doi:10.1103/PhysRevA.81.052316
[3] Egerstedt, M.; Martini, S.; Cao, M., Interacting with networks: How does structure relate to controllability in single-leader, consensus networks, IEEE Control Systems Magazine, 32, 4, 66-73 (2012) · Zbl 1395.93115 · doi:10.1109/MCS.2012.2195411
[4] Abbas W, Shabbir M, and Yazicioglu Y, Edge augmentation with controllability constraints in directed laplacian networks, IEEE Control Systems Letters, 2021, 99, DOI: doi:10.1109/LC-SYS.2021.3089372. · Zbl 1536.93828
[5] Gambuzza L V and Frasca M, Distributed control of multi-consensus, IEEE Transactions on Automatic Control, 2020, 99, DOI: doi:10.1109/tac.2020.3006820. · Zbl 1490.94088
[6] Chen X, Pequito S, and Pappas G J, Minimal edge addition for network controllability, IEEE Transactions on Control of Network Systems, 2018, 99, DOI: doi:10.1109/TCNS.2018.2814841. · Zbl 1515.93035
[7] Kalman, R., Controllability of linear dynamical systems, Contributions to Differential Equations, 1, 3, 189-213 (1963) · Zbl 0151.13303
[8] Herbert G and Tanner, On the controllability of nearest neighbor interconnections, Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, 2464-2472.
[9] Rahmani A and Mesbahi M, On the controlled agreement problem, Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006, 1376-1381.
[10] Rahmani A and Mesbahi M, Pulling the strings on agreement: Anchoring, controllability, and graph automorphisms, Proceedings of the 2007 American Control Conference, New York City, USA, 2007, 2738-2743.
[11] Rahmani, A.; Ji, M.; Mesbahi, M., Controllability of multi-agent systems from a graph-theoretic perspective, SIAM Journal on Control and Optimization, 48, 1, 162-186 (2009) · Zbl 1182.93025 · doi:10.1137/060674909
[12] Ji, Z. J.; Lin, H.; Yu, H., Protocols design and uncontrollable topologies construction for multiagent networks, IEEE Transactions on Automatic Control, 3, 60, 781-786 (2015) · Zbl 1360.93099 · doi:10.1109/TAC.2014.2335971
[13] Ji, Z. J.; Lin, H.; Cao, S. B., The complexity in complete graphic characterizations of multi-agent controllability, IEEE Transactions on Cybernectics, 1, 51, 64-76 (2021) · doi:10.1109/TCYB.2020.2972403
[14] Qu, J. J.; Ji, Z. J.; Shi, Y., The graphical conditions for controllability of multiagent systems under equitable partition, IEEE Transcations on Cybernetics, 9, 51, 4661-4672 (2021) · doi:10.1109/TCYB.2020.3004851
[15] Huang, Y. X.; Liu, Y. G., Practical tracking via adaptive event-triggered feedback for uncertain nonlinear systems, IEEE Transactions on Automatic Control, 64, 9, 3920-3927 (2019) · Zbl 1482.93308 · doi:10.1109/TAC.2019.2891411
[16] Sun Y S, Ji Z J, and Liu K, Event-based consensus for general linear multiagent systems under switching topologies, Complexity, 2020, DOI: doi:10.1155/2020/5972749. · Zbl 1435.93031
[17] Sun, H.; Liu, Y. G.; Li, F. Z., Distributed optimal consensus of second-order multi-agent system, SCIENCE CHINA Information Sciences, 64, 10, 209201 (2021) · doi:10.1007/s11432-018-9879-3
[18] Tian L, Ji Z J, Liu Y G, et al., A unified approach for the influences of negative weights on system consensus, Systems and Control Letters, 2022, 160, DOI: doi:10.1016/j.sysconle.2021.105109. · Zbl 1485.93541
[19] Lin, C. T., Structural controllability, IEEE Transactions on Automatic Control, 19, 3, 201-208 (1974) · Zbl 0282.93011 · doi:10.1109/TAC.1974.1100557
[20] Shields, R.; Pearson, J., Structural controllability of multi-input linear systems, IEEE Transactions on Automatic Control, 21, 2, 203-212 (1976) · Zbl 0324.93007 · doi:10.1109/TAC.1976.1101198
[21] Hosoe, S., Determination of generic dimensions of controllable subspaces and its application, IEEE Transactions on Automatic Control, 25, 6, 1192-1196 (1980) · Zbl 0483.93017 · doi:10.1109/TAC.1980.1102506
[22] Mayeda, H., On structural controllability theorem, IEEE Transactions on Automatic Control, 26, 3, 795-798 (1981) · Zbl 0487.93009 · doi:10.1109/TAC.1981.1102707
[23] Mayeda, H.; Yamada, T., Strong structural controllability, SIAM Journal on Control and Optimization, 17, 1, 123-138 (1979) · Zbl 0409.93011 · doi:10.1137/0317010
[24] Monshizadeh, N.; Zhang, S.; Camlibel, M. K., Zero forcing sets and controllability of dynamical systems defined on graph, IEEE Transactions on Automatic Control, 59, 9, 2562-2567 (2014) · Zbl 1360.93102 · doi:10.1109/TAC.2014.2308619
[25] Mousavi, S. S.; Haeri, M.; Mesbahi, M., On the structural and strong structural controllability of undirected networks, IEEE Transactions on Automatic Control, 66, 7, 2234-2241 (2017) · Zbl 1423.93060 · doi:10.1109/TAC.2017.2762620
[26] Jia, J.; Trentelman, H. L.; Baar, W., Strong structural controllability of systems on colored graphs, IEEE Transactions on Automatic Control, 65, 10, 3977-3990 (2020) · Zbl 1533.93066 · doi:10.1109/TAC.2019.2948425
[27] Liu, P.; Tian, Y. P.; Zhang, Y., Leader selection for strong structural controllability of singleintegrator multi-agent systems, Journal of Systems Science and Complexity, 30, 6, 1227-1241 (2017) · Zbl 1402.93029 · doi:10.1007/s11424-017-6074-z
[28] Hartung C, Reissig G, and Svaricek F, Characterization of strong structural controllability of uncertain linear time-varying discrete-time systems, Proceedings of the 51st IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2012, 2189-2194.
[29] Hartung C, Reissig G, and Svaricek F, Sufficient conditions for strong structural controllability of uncertain linear time-varying systems, Proceedings of 2013 American Control Conference, Washington, DC, USA, 2013, 5875-5880.
[30] Reissig, G.; Hartung, C.; Svaricek, F., Strong structural controllability and observability of linear time-varying systems, IEEE Transactions on Automatic Control, 59, 11, 3087-3092 (2014) · Zbl 1360.93104 · doi:10.1109/TAC.2014.2320297
[31] Hou, B.; Xiang, L.; Chen, G., Structural controllability of temporally switching networks, IEEE Transactions on Circuits and Systems-I: Regular Papers, 63, 10, 1771-1781 (2016) · Zbl 1469.94194 · doi:10.1109/TCSI.2016.2583500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.