×

A 3D memristive chaotic system with conditional symmetry. (English) Zbl 1505.94128


MSC:

94C05 Analytic circuit theory
94C60 Circuits in qualitative investigation and simulation of models
Full Text: DOI

References:

[1] Chua, L. O., Memristor-the missing circuit element, IEEE Trans Circuit Theory, 18, 5, 507-519 (1971)
[2] Chua, L. O.; Kang, S. M., Memristive devices and systems, Proc IEE, 64, 2, 209-223 (1976)
[3] Wen, S.; Xiao, S.; Yang, Y.; Yan, Z.; Zeng, Z.; Huang, T., Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method, IEEE T Comput Aid D, 38, 6, 1084-1094 (2019)
[4] Adhikari, S. P.; Sah, M.; Kim, H.; Chua, L. O., Three fingerprints of memristor, IEEE Trans Circuits Syst I, 60, 11, 3008-3021 (2013)
[5] Peng, Y.; Sun, K.; He, S., A discrete memristor model and its application in Hénon map, Chaos Soliton Fract, 137, Article 109873 pp. (2020) · Zbl 1489.94207
[6] Wang, X.; Chen, Y.; Gu, Y.; Li, H., Spintronic memristor temperature sensor, IEEE Electr Device Lett, 31, 1, 20-22 (2010)
[7] Sheng, Y.; Huang, T.; Zeng, Z.; Li, P., Exponential stabilization of inertial memristive neural networks with multiple time delays, IEEE T Cybernetics, 51, 2, 579-588 (2021)
[8] Bao, G.; Zhang, Y.; Zeng, Z., Memory analysis for memristors and memristive recurrent neural networks, IEEE-CAA J Automatic, 7, 1, 96-105 (2020)
[9] Nazarimehr, F.; Rajagopal, K.; Kengne, J.; Jafari, S.; Pham, V. T., A new four-dimensional system containing chaotic or hyperchaotic attractors with no equilibrium, a line of equilibria and unstable equilibria, Chaos Solitons Fractals, 111, 108-118 (2018) · Zbl 1392.34048
[10] Minati, L.; Gambuzza, L. V.; Thio, W. J.; Sprott, J. C.; Frasca, M., A chaotic circuit based on a physical memristor, Chaos Solitons Fractals, 138, Article 109990 pp. (2020) · Zbl 1490.94080
[11] Min, F.; Luo, A., Periodic and chaotic synchronizations of two distinct dynamical systems under sinusoidal constraints, Chaos Solitons Fractrals, 45, 7, 998-1011 (2012) · Zbl 1264.34108
[12] Jafari, S.; Sprott, J. C., Simple chaotic flows with a line equilibrium, Chaos Solitons Fractals, 57, 4, 79-84 (2013) · Zbl 1355.37056
[13] Itoh, M.; Chua, L. O., Memristor oscillators, Int J Bifurcat Chaos, 18, 11, 3183-3206 (2008) · Zbl 1165.94300
[14] Yuan, F.; Wang, G.; Wang, X., Extreme multistability in a memristor-based multi-scroll hyperchaotic system, Chaos, 26, 7, 507-519 (2016)
[15] Zhu, M.; Wang, C.; Deng, Q.; Hong, Q., Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit, Int J Bifurcat Chaos, 30, 13, 2050184 (2020) · Zbl 1456.78013
[16] Bao, B.; Li, Q.; Wang, N.; Xu, Q., Multistability in Chua’s circuit with two stable node-foci, Chaos, 26, 4, Article 043111 pp. (2016)
[17] Jaros, P.; Perlikowski, P.; Kapitaniak, T., Synchronization and multistability in the ring of modified Rössler oscillators, Eur Phys J-Spec Top, 224, 8, 1541-1552 (2015)
[18] Njitacke, Z. T.; Kengne, J.; Fotsin, H. B.; Nguomkam, A. N.; Tchiotsop, D., Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bridge-based jerk circuit, Chaos Solitons Fractals, 91, 180-197 (2016)
[19] Sprott, J. C.; Jafari, S.; Khalaf, A. J.M.; Kapitaniak, T., Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping, Eur Phys J-Spec Top, 226, 9, 1979-1985 (2017)
[20] Li, C.; Hu, W.; Sprott, J. C.; Wang, X., Multistability in symmetric chaotic systems, Eur Phys J-Spec Top, 224, 8, 1493-1506 (2015)
[21] Li, C.; Sprott, J. C.; Xing, H., Constructing chaotic systems with conditional symmetry, Nonlinear Dyn, 87, 1351-1358 (2016) · Zbl 1372.37069
[22] Li, C.; Sun, J.; Sprott, J. C.; Lei, T., Hidden attractors with conditional symmetry, Int J Bifurcat Chaos, 30, 14, 2030042 (2020) · Zbl 1455.37027
[23] Li, C.; Lu, T.; Chen, G.; Xing, H., Doubling the coexisting attractors, Chaos, 29, 5, 51102 (2019) · Zbl 1415.34100
[24] Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R., Nanobatteries in redox-based resistive switches require extension of memristor theory, Nat Commun, 4, 1771 (2013)
[25] Kim J, Pershin YV, Yin M, Datta T, and Di Ventra M. An experimental proof that resistance-switching memory cells are not memristors. arXiv:1909.07238v2.
[26] Li, C.; Sprott, J. C., Variable-boostable chaotic flows, Optik, 127, 22, 10389-10398 (2016)
[27] Zeng, J.; Wang, C., A novel hyperchaotic image encryption system based on particle swarm optimization algorithm and cellular automata, Secur Commun Netw, 5, 1-15 (2021)
[28] Deng, J.; Zhou, M.; Wang, C.; Wang, S.; Xu, C., Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multi-feedback loops, Multimed Tools Appl, 80, 13821-13840 (2021)
[29] Lai, Q.; Benyamin, N.; Feng, L., Dynamic analysis, circuit realization, control design and image encryption application of an extended lü system with coexisting attractors, Chaos Solitons Fractals, 114, C, 230-245 (2018) · Zbl 1415.34079
[30] Li, C.; Min, F.; Jin, Q.; Ma, H., Extreme multistability analysis of memristor-based chaotic system and its application in image decryption, AIP Adv, 7, 12, Article 125204 pp. (2017)
[31] Akgul, A.; Calgan, H.; Koyuncu, I.; Pehlivan, I.; Istanbullu, A., Chaos-based engineering applications with a 3D chaotic system without equilibrium points, Nonlinear Dyn, 84, 2, 481-495 (2015)
[32] Yu, F.; Qian, S.; Chen, X.; Huang, Y.; Cai, S.; Du, S., Chaos-based engineering applications with a 6D memristive multistable hyperchaotic system and a 2D SF-SIMM hyperchaotic map, Complexity, 1, 1-21 (2021)
[33] Chen, X.; Qian, S.; Yu, F.; Zhang, Z.; Shen, H.; Huang, Y.; Cai, S.; Deng, Z.; Li, Y.; Du, S., Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption, Complexity, 2020, 7, 1-17 (2020) · Zbl 1435.37056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.