×

Transverse Lyapunov exponent and chimeras in globally coupled maps. (English) Zbl 07906728

Summary: We study the stability properties and the long-term dynamics of chimeras in systems of globally coupled maps. In particular, we establish a formula for the transverse Lyapunov exponent of the states of the system containing synchronized units. We use this formula to present numerical evidence of attracting chimeras having chaotic dynamics as well as periodic behaviors. We also show that, at least for polynomial local maps, attracting periodic cycles tend to belong to cluster spaces, and, more generally, limit sets of chimera orbits have zero Lebesgue measure for strong coupling regimes.

MSC:

37M22 Computational methods for attractors of dynamical systems
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37G35 Dynamical aspects of attractors and their bifurcations
37B25 Stability of topological dynamical systems
Full Text: DOI

References:

[1] Abrams, D. M. and Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93 (2004), 174102.
[2] Alexander, J. C., Yorke, J. A., You, Z., and Kan, I., Riddled basins, Internat. J. Bifur. Chaos, 4 (1992), pp. 795-813. · Zbl 0870.58046
[3] Ashwin, P., Buescu, J., and Stewart, I., From attractor to chaotic saddle: A tale of transverse instability, Nonlinearity, 9 (1996), pp. 703-737. · Zbl 0887.58034
[4] Baishali, R. and Acharyya, A. B., Synchronization of globally coupled Lozi map using periodically varying parameter, Acta Phys. Polon. B, 50 (2019), pp. 1671-1679. · Zbl 07913406
[5] Bates, D. J., Bihan, F., and Sottile, F., Bounds on the number of real solutions to polynomial equations, Int. Math. Res. Not. IMRN, 23 (2007), pp. 26-31. · Zbl 1129.14077
[6] Davidsen, J., Maistrenko, Y., and Showalter, eds., K., Special collection: Chimera states: From theory and experiments to technology and living systems, Chaos, 32/33/34 (2022-2024).
[7] Cano, A. V. and Cosenza, M. G., Chimeras and clusters in networks of hyperbolic chaotic oscillators, Phys. Rev. E, 95 (2017), 030202(R).
[8] Cano, A. V. and Cosenza, M. G., Asymmetric cluster and chimera dynamics in globally coupled systems, Chaos, 28 (2018), pp. 113-119. · Zbl 1403.34038
[9] Caravaggio, A., Cerboni Baiardi, L., and Sodini, M., A note on symmetry breaking in a non linear marketing model, Decis. Econ. Finance, 44 (2021), pp. 507-531. · Zbl 1481.90197
[10] Cosenza, M. G., Alvarez-Llamoza, O., and Cano, A. V., Chimeras and clusters emerging from robust-chaos dynamics, Complexity, 2021 (2021), 8878301.
[11] Cox, D., Little, J., and O’Shea, D., Using Algebraic Geometry, 2nd ed., , Springer-Verlag, New York, 2005. · Zbl 1079.13017
[12] Fernandez, B., Global synchronisation in translation invariant coupled map lattices, Internat. J. Bifur. Chaos, 18 (2008), pp. 3455-3459. · Zbl 1165.37306
[13] Ferré, M. A., Critical visit to the chimera world, Chaos Solitons Fractals, 166 (2023), 112991.
[14] Gambuzza, L. V., Minati, L., and Frasca, M., Experimental observations of chimera states in locally and non-locally coupled Stuart-Landau oscillator circuits, Chaos Solitons Fractals, 138 (2020), 109907. · Zbl 1490.94088
[15] Glendinning, P., Milnor attractors and topological attractors of a piecewise linear map, Nonlinearity, 14 (2001), pp. 239-257. · Zbl 0992.37046
[16] Glendinning, P., The stability boundary of synchronized states in globally coupled dynamical systems, Phys. Lett. A, 259 (1999), pp. 129-134. · Zbl 0934.37019
[17] Hasler, M. and Maistrenko, Y. L., An introduction to the synchronization of chaotic systems: Coupled skew tent maps, IEEE Trans. Circuits Syst., 44 (1997), pp. 856-866.
[18] Jost, J. and Joy, M. P., Spectral properties and synchronization in coupled map lattices, Phys. Rev. E, 65 (2001), 016201.
[19] Kaneko, K., Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements, Phys. D, 41 (1990), pp. 137-172. · Zbl 0709.58520
[20] Kaneko, K., From globally coupled maps to complex-systems biology, Chaos, 25 (2015), 097608.
[21] Kemeth, F. P., Haugland, S. W., Schmidt, L., Kevrekidis, L. G., and Krischer, K., A classification scheme for chimera states, Chaos, 26 (2016), 094815.
[22] Koçak, H. and Palmer, K., Lyapunov exponents and stability in interval maps, SeMA J., 51 (2010), pp. 79-82. · Zbl 1242.37029
[23] Kuramoto, Y. and Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5 (2002), pp. 380-385.
[24] Martens, E. A., Thutupalli, S., Fourriere, A., and Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 10563-10567.
[25] Mishra, A., Suman, S., and Dana, S. K., Chimeras in globally coupled oscillators: A review, Chaos, 33 (2023), 092101. · Zbl 07861861
[26] Panaggio, M. J. and Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28 (2015), pp. 67-87. · Zbl 1392.34036
[27] Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge University Press, Cambridge, UK, 2016. · Zbl 1419.37002
[28] Sethia, G. C. and Sen, A., Chimera states: The existence criteria revisited, Phys. Rev. Lett., 112 (2014), 144101.
[29] Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. · Zbl 0475.28009
[30] Wickramasinghe, M. and Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns, PLoS ONE, 8 (2013), e80586.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.