×

Fractional Schrödinger equation and time dependent potentials. (English) Zbl 1516.35459

Summary: We investigate the solutions for a time-dependent potential by considering two scenarios for the fractional Schrödinger equation. The first scenario analyzes the influence of the time-dependent potential in the absence of the kinetic term. We obtain analytical and numerical solutions for this case by considering the Caputo fractional time derivative, which extends Rabi’s model. In the second scenario, we incorporate the kinetic term in the Schrödinger equation and consider fractional spatial derivatives. For this case, we analyze the spreading of the Gaussian wave package under the action of the time and spatial fractional differential operators.

MSC:

35R11 Fractional partial differential equations
35Q41 Time-dependent Schrödinger equations and Dirac equations

References:

[1] Guo, B.; Pu, X.; Huang, F., Fractional partial differential equations and their numerical solutions (2015), World Scientific · Zbl 1335.35001
[2] Evangelista, L. R.; Lenzi, E. K., Fractional diffusion equations and anomalous diffusion (2018), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1457.35001
[3] Solís-Pérez, J. E.; Gómez-Aguilar, J. F.; Atangana, A., Novel numerical method for solving variable-order fractional differential equations with power, exponential and mittag-leffler laws, Chaos, Solitons Fractals, 114, 175-185 (2018) · Zbl 1415.65148
[4] Herrmann, R., Fractional calculus: An introduction for physicists (2014), World Scientific · Zbl 1293.26001
[5] Templos-Hernández, D. J.; Quezada-Téllez, L. A.; Gonzáles-Hernández, B. M.; Rojas-Vite, G.; Pineda-Sánchez, J. E.; Fernández-Anaya, G., A fractional-order approach to cardiac rhythm analysis, Chaos Solitons Fractals, 147, Article 110942 pp. (2021)
[6] Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.; Lenzi, E. K.; Evangelista, L. R., Fractional diffusion equation and the electrical impedance: Experimental evidence in liquid-crystalline cells, J Phys Chem C, 114, 8773-8777 (2012)
[7] Bisquert, J., Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination, Phys Rev E, 72, Article 011109 pp. (2005)
[8] Somer, A.; Novatski, A.; Serbena, F. C.; Lenzi, E. K., Fractional GCEs behaviors merged: Prediction to the photoacoustic signal obtained with subdiffusive and superdiffusive operators, J Appl Phys, 128, Article 075107 pp. (2020)
[9] Ali, M. S.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B., Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun Nonlinear Sci Numer Simul, 83, Article 105088 pp. (2020) · Zbl 1454.34102
[10] Pandey, V.; Holm, S., A fractional calculus approach to the propagation of waves in an unconsolidated granular medium, J Acoust Soc Am, 138, 3, 1766 (2015)
[11] Bagley, R. L.; Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J Rheol, 27, 3, 201-210 (1983) · Zbl 0515.76012
[12] Rosseto, M. P.; Evangelista, L. R.; Lenzi, E. K.; Zola, R. S.; Ribeiro de Almeida, RR, Frequency-dependent dielectric permittivity in Poisson-Nernst-Planck model, J Phys Chem B, 126, 34, 6446-6453 (2022)
[13] Scarfone, A. M.; Barbero, G.; Evangelista, L. R.; Lenzi, E. K., Anomalous diffusion and surface effects on the electric response of electrolytic cells, Physchem, 2, 2, 163-178 (2022)
[14] Lenzi, E. K.; Guilherme, L. M.S.; da Silva, BVHV.; Koltun, A. P.S.; Evangelista, L. R.; Zola, R. S., Anomalous diffusion and electrical impedance response: Fractional operators with singular and non-singular kernels, Commun Nonlinear Sci Numer Simul, 102, Article 105907 pp. (2021) · Zbl 1476.78014
[15] Chen, W.; Hu, S.; Cai, W., A causal fractional derivative model for acoustic wave propagation in lossy media, Arch Appl Mech, 86, 3, 529-539 (2016)
[16] Cai, W.; Chen, W.; Fang, J.; Sl, Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation, Appl Mech Rev, 70, 3, Article 030802 pp. (2018)
[17] Jiang, Y.; Qi, H.; Xu, H.; Jiang, X., Transient electroosmotic slip flow of fractional Oldroyd-B fluids, Microfluid Nanofluid, 21, 1, 1-10 (2017)
[18] Chang, A.; Sun, H. G.; Zhang, Y.; Zheng, C.; Min, F., Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs, Phys A Stat Mech Appl, 519, 119-126 (2019) · Zbl 1514.76086
[19] Chang, A.; Sun, H. G.; Zheng, C.; Lu, B.; Lu, C.; Ma, R., A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Phys A Stat Mech Appl, 502, 356-369 (2018) · Zbl 1514.76073
[20] Pandey, V.; Holm, S., Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations, J Acoust Soc Am, 140, 6, 4225-4236 (2016)
[21] Wang, S.; Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J Math Phys, 48, Article 043502 pp. (2007) · Zbl 1137.81328
[22] Heydari, M. H.; Razzaghi, M.; Baleanu, D., A numerical method based on the piecewise Jacobi functions for distributed-order fractional Schrödinger equation, Commun Nonlinear Sci Numer Simul, 116, Article 106873 pp. (2023) · Zbl 07609370
[23] Laskin, N., Fractional quantum mechanics (2018), World Scientific Publishing Company · Zbl 1425.81007
[24] Laskin, N., Fractional Schrödinger equation, Phys Rev E, 66, 5, Article 056108 pp. (2002)
[25] Laskin, N., Fractals and quantum mechanics, Chaos, 10, 780-790 (2000) · Zbl 1071.81513
[26] Sandev, T.; Petreska, I.; Lenzi, E. K., Time-dependent Schrödinger-like equation with nonlocal term, J Math Phys, 55, 9, Article 092105 pp. (2014) · Zbl 1297.81078
[27] Lenzi, E. K.; de Oliveira, BF.; da Silva, LR.; Evangelista, L. R., Solutions for a Schrödinger equation with a nonlocal term, J Math Phys, 49, 3, Article 032108 pp. (2008) · Zbl 1153.81390
[28] Sandev, T.; Petreska, I.; Lenzi, E. K., Generalized time-dependent Schrödinger equation in two dimensions under constraints, J Math Phys, 59, 1, Article 012104 pp. (2018) · Zbl 1380.81112
[29] Petreska, I.; de Castro, ASM.; Sandev, T.; Lenzi, E. K., The time-dependent Schrödinger equation in three dimensions under geometric constraints, J Math Phys, 60, 3, Article 032101 pp. (2019) · Zbl 1414.81097
[30] Sandev, T.; Petreska, I.; Lenzi, E. K., Constrained quantum motion in \(\delta \)-potential and application of a generalized integral operator, Comput Math Appl, 78, 5, 1695-1704 (2019) · Zbl 1442.81025
[31] Capelas de Oliveira, E.; Vaz, J., Tunneling in fractional quantum mechanics, J Phys A, 44, Article 185303 pp. (2011) · Zbl 1215.81115
[32] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J Math Phys, 47, Article 082104 pp. (2006) · Zbl 1112.81028
[33] Dong, J., Fractional green’s function for the time-dependent scattering problem in the space-time-fractional quantum mechanics, Internat J Theoret Phys, 53, 4065-4078 (2014) · Zbl 1308.81075
[34] Naber, M., Time fractional Schrödinger equation, J Math Phys, 45, 8, 3339-3352 (2004) · Zbl 1071.81035
[35] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput Math Appl, 56, 1138-1145 (2008) · Zbl 1155.65372
[36] Liu, F.; Shen, S.; Turner, I. W., Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J, 46, C488-C504 (2005) · Zbl 1082.60511
[37] Rydin, Y. L.; Mattsson, K.; Werpes, J.; Sjöqvist, E., High-order finite difference method for the Schrödinger equation on deforming domains, J Comput Phys, 443, Article 110530 pp. (2021) · Zbl 07515429
[38] Feynman, R. P.; Hibbs, A. R., Quantum mechanics and path integrals (1965), McGraw-Hill: McGraw-Hill New York · Zbl 0176.54902
[39] Iomin, A., Fractional-time Schrödinger equation: Fractional dynamics on a comb, Chaos Solitons Fractals, 44, 348-352 (2011) · Zbl 1225.81053
[40] Lenzi, E. K.; Evangelista, L. R.; Ribeiro, H. V.; Magin, R. L., Schrödinger equation with geometric constraints and position-dependent mass: Linked fractional calculus models, Quantum Rep, 4, 3, 296-308 (2022)
[41] Okposo, N. I.; Veeresha, A.; Okposo, E. N., Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons, Chinese J Phys, 77, 965-984 (2022) · Zbl 07851679
[42] Achar, B. N.; Narahari; Yale, B. T.; Hanneken, J. W., Time fractional Schrödinger equation revisited, Adv Math Phys, 2013, Article 290216 pp. (2013) · Zbl 1292.81031
[43] Esen, A.; Sulaiman, T. A.; Bulut, H.; Baskonus, H. M., Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation, Optik, 167, 150-156 (2018)
[44] Liaqat, M. I.; Akgül, A., A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Solitons Fractals, 162, Article 112487 pp. (2022) · Zbl 1506.35268
[45] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific · Zbl 0998.26002
[46] Heydari, M. H.; Atangana, A., A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals, 128, 339-348 (2009) · Zbl 1483.65165
[47] El-Nabulsi, R. A.; Anukool, W., A family of nonlinear Schrödinger equations and their solitons solutions, Chaos Solitons Fractals, 166, Article 112907 pp. (2023)
[48] Ain, Q. T.; He, J-H.; Anjum, N.; Ali, M., The fractional complex transform: a novel approach to the time-fractional Schrd̈inger equation, Fractals, 28, 7, Article 2050141 pp. (2020) · Zbl 1494.35153
[49] Zu, C.; Yu, X., Time fractional Schrödinger equation with a limit based fractional derivative, Chaos Solitons Fractals, 157, Article 111941 pp. (2022) · Zbl 1498.35604
[50] Lu, L.; Yu, X., Time fractional evolution of the two-level system interacting with light field, Laser Phys Lett, 14, 11, Article 115202 pp. (2017)
[51] Sakurai, J. J.; Napolitano, J., Modern quantum mechanics (2017), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1392.81003
[52] Cohen-Tannoudji, C.; Diu, B.; Laloe, F., Quantum mechanics (2006), Wiley-Interscience
[53] Ruyten, W. M., Magnetic and optical resonance of two-level quantum systems in modulated fields. I. Bloch equation approach, Phys Rev A, 42, 7, 4226-4245 (1990)
[54] Angelo, R. M.; Wreszinski, W. F., Two-level quantum dynamics, integrability, and unitary NOT gates, Phys Rev A, 72, Article 034105 pp. (2005)
[55] Cius, D.; Menon, L.; dos Santos, MAF.; de Castro, ASM.; Andrade, F. M., Unitary evolution for a two-level quantum system in fractional-time scenario, Phys Rev E, 106, Article 054126 pp. (2022)
[56] Itano, W. M.; Bergquist, J. C.; Bollinger, J. J.; Gilligian, J. M.; Heinzen, D. J.; Moore, F. L., Quantum projection noise: Population fluctuations in two-level systems, Phys Rev A, 47, 5, 3554-3570 (1993)
[57] Kibs, O. V.; Slepyan, G. Y.a.; Maksimenko, S. A.; Hoffmann, A., Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry, Phys Rev Lett, 102, 2, Article 023601 pp. (2009)
[58] Rabi, I. I., Space quantization in a gyrating magnetic field, Phys Rev, 51, 652-654 (1937) · Zbl 0017.23501
[59] Evangelista, L. R.; Lenzi, E. K., An introduction to anomalous diffusion and relaxation (2023), Springer Nature · Zbl 1515.60011
[60] Bayin, S. S., Definition of the Riesz derivative and its application to space fractional quantum mechanics, J Math Phys, 57, Article 123501 pp. (2016) · Zbl 1353.81041
[61] Viñales, A. D.; Despósito, M. A., Anomalous diffusion induced by a Mittag-Leffler correlated noise, Phys Rev E, 75, Article 042102 pp. (2007)
[62] Despósito, M. A.; Viñales, A. D., Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation, Phys Rev E, 77, Article 031123 pp. (2008)
[63] Fa, K. S., Anomalous diffusion in a generalized Langevin equation, J Math Phys, 50, Article 083301 pp. (2009) · Zbl 1298.82048
[64] Figueiredo Camargo, R.; Capelas de Oliveira, E.; Vaz, J., On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator, J Math Phys, 50, Article 123518 pp. (2009) · Zbl 1373.82056
[65] Viñales, A. D.; Wang, K. G.; Despósito, A. M., Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise, Phys Rev E, 80, Article 011101 pp. (2009)
[66] Figueiredo Camargo, R.; Chiacchio, A. O.; Charnet, R.; Capelas de Oliveira, E., Solution of the fractional Langevin equation and the Mittag-Leffler functions, J Math Phys, 50, Article 063507 pp. (2009) · Zbl 1216.82028
[67] Crank, J., The mathematics of diffusion (1975), Oxford University Press · Zbl 0071.41401
[68] Bayin, S. S., Time fractional Schrödinger equation: Fox’s H-functions and the effective potential, J Math Phys, 54, Article 012103 pp. (2013) · Zbl 1280.81034
[69] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The H-function (2010), Springer-Verlag: Springer-Verlag New York · Zbl 1223.85008
[70] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., Fractional reaction-diffusion equations, Astrophys Space Sci, 305, 289-296 (2006) · Zbl 1105.35307
[71] Shen, S.; Liu, F., Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends, ANZIAM J, 46, C871-C887 (2005) · Zbl 1078.65563
[72] Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y., Algorithms for the fractional calculus: A selection of numerical methods, Comput Methods Appl Mech Engrg, 194, 743-773 (2005) · Zbl 1119.65352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.