×

New estimates for eigenvalues of the basic Dirac operator. (English) Zbl 1197.53036

For Riemannian foliations with transverse spin structure, there exists the notion of a basic Dirac operator \(D_b\) acting on transverse spinor fields. There are lower bounds known for the square of the first eigenvalue of \(D_b\) in terms of the transversal scalar curvature, the mean curvature and the first eigenvalue of the basic Yamabe operator [cf. S. D. Jung, J. Geom. Phys. 39, No. 3, 253–264 (2001; Zbl 1024.53019) and S. D. Jung, B. H. Kim and J. S. Pak, J. Geom. Phys. 51, No. 2, 166–182 (2004; Zbl 1076.58022)]. These bounds generalise known results due to Th. Friedrich and O. Hijazi for the first eigenvalue of the Dirac operator on a Riemannian spin manifold.
In the current work, the authors improve (the mean curvature part of) these lower bounds by using a modified transverse spinor connection. In the limiting case, the underlying foliation is transversally Einstein with minimal leaves.

MSC:

53C12 Foliations (differential geometric aspects)
53C27 Spin and Spin\({}^c\) geometry
53C43 Differential geometric aspects of harmonic maps
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI

References:

[1] J. A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179–194. · Zbl 0759.57017 · doi:10.1007/BF00130919
[2] D. Domínguez, A tenseness theorem for Riemannian foliations, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1331–1335. · Zbl 0876.57041
[3] J. F. Glazebrook and F. W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140 (1991), 217–240. · Zbl 0744.53014 · doi:10.1007/BF02099498
[4] S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), 253–264. · Zbl 1024.53019 · doi:10.1016/S0393-0440(01)00014-6
[5] S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom. Phys. 57 (2007), 1239–1246. · Zbl 1115.53032 · doi:10.1016/j.geomphys.2006.04.008
[6] S. D. Jung, B. H. Kim and J. S. Pak, Lower bounds for the eigenvalues of the basic Dirac operator on a Riemannian foliation, J. Geom. Phys. 51 (2004), 116–182. · Zbl 1076.58022 · doi:10.1016/j.geomphys.2003.10.004
[7] P. March, M. Min-Oo and E. A. Ruh, Mean curvature of Riemannian foliations, Canad. Math. Bull. 39 (1996), 95–105. · Zbl 0853.53023 · doi:10.4153/CMB-1996-012-4
[8] A. Mason, An application of stochastic flows to Riemannian foliations, Houston J. Math. 26 (2000), 481–515. · Zbl 1159.58311
[9] E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1966), 1249–1275. · Zbl 0865.58047 · doi:10.1353/ajm.1996.0053
[10] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-York, 1988. · Zbl 0643.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.