×

Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. (English) Zbl 1196.33020

Summary: The fast computation of the Gauss hypergeometric function \(_2F_1\) with all its parameters complex is a difficult task. Although the \(_2F_1\) function verifies numerous analytical properties involving power series expansions whose implementation is apparently immediate, their use is thwarted by instabilities induced by cancellations between very large terms. Furthermore, small areas of the complex plane, in the vicinity of \(_2F_1\), are inaccessible using \(_2F_1\) power series linear transformations. In order to solve these problems, a generalization of R.C. Forrey’s transformation theory has been developed. The latter has been successful in treating the \(_2F_1\) function with real parameters. As in real case transformation theory, the large canceling terms occurring in \(_2F_1\) analytical formulas are rigorously dealt with, but by way of a new method, directly applicable to the complex plane. Taylor series expansions are employed to enter complex areas outside the domain of validity of power series analytical formulas. The proposed algorithm, however, becomes unstable in general when \(|a|, |b|, |c|\) are moderate or large. As a physical application, the calculation of the wave functions of the analytical Pöschl-Teller-Ginocchio potential involving \(_2F_1\) evaluations is considered.

MSC:

33F05 Numerical approximation and evaluation of special functions
33C05 Classical hypergeometric functions, \({}_2F_1\)
81-04 Software, source code, etc. for problems pertaining to quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Software:

mctoolbox

References:

[1] Michel, N., Comput. Phys. Comm., 176, 232 (2007) · Zbl 1196.81030
[2] Alder, K.; Bohr, A.; Huus, T.; Mottelson, B.; Winther, A., Rev. Mod. Phys., 28, 432 (1956) · Zbl 0074.44601
[3] Biedenharn, L. C.; Brussaard, P. J., Coulomb Excitation (1965), Clarendon Press: Clarendon Press Oxford
[4] Mullin, C. J.; Guth, E., Phys. Rev., 82, 141 (1951)
[5] van Haeringen, H.; van Wageningen, R., J. Math. Phys., 16, 1441 (1975)
[6] Datta, S., J. Phys. B: At. Mol. Phys., 18, 853 (1985)
[7] Adkins, G.; Mc Donnell, J., Phys. Rev. D, 75, 082001 (2007)
[8] Hostler, L., J. Math. Phys., 28, 2984 (1987)
[9] Adam, J. A., J. Math. Phys., 30, 744 (1989) · Zbl 0668.76141
[10] Pierro, V.; Pinto, I. M.; Spallici, A., Mon. Not. R. Astron. Soc., 334, 855 (2002)
[11] Eckart, C., Phys. Rev., 35, 1303 (1930) · JFM 56.0750.03
[12] Rosen, N.; Morse, P. M., Phys. Rev., 42, 210 (1932) · Zbl 0005.33001
[13] Hulthén, L., Ark. Mat. Astron. Fys. A, 28 (1942), 5 · JFM 68.0646.04
[14] Mannning, M. F.; Rosen, N., Phys. Rev., 44, 953 (1933)
[15] Dong, S. H.; Garcia-Ravelo, J., Phys. Scripta, 75, 307 (2007) · Zbl 1111.81044
[16] Natanzon, G. A., Vestn. Leningr. Univ. Fiz. Khim.. Vestn. Leningr. Univ. Fiz. Khim., Theor. Math. Phys., 38, 146 (1979)
[17] Rojas, C.; Villalba, V. M., Phys. Rev. A, 71, 052101 (2005) · Zbl 1227.81169
[18] Guo, J.-Y.; Fang, X. Z.; Xu, F.-X., Phys. Rev. A, 66, 062105 (2002)
[19] Guo, J.-Y.; Meng, J.; Xu, F.-X., Chin. Phys. Lett., 20, 602 (2003)
[20] Sucu, Y.; Ünal, N., J. Math. Phys., 48, 052503 (2007) · Zbl 1144.81415
[21] Cooper, F.; Ginocchio, J. N.; Khare, A., Phys. Rev. D, 36, 2458 (1987)
[22] Cardero, P.; Salamo, S., J. Math. Phys., 35, 3301 (1994) · Zbl 0881.33021
[23] Chetouani, L.; Guechi, L.; Lecheheb, A.; Hammann, T., J. Math. Phys., 34, 1257 (1993) · Zbl 0773.35056
[24] Ginocchio, J. N., Ann. Phys.. Ann. Phys., Ann. Phys., 159, 467 (1985) · Zbl 0653.34008
[25] Chetouani, L.; Guechi, L.; Lecheheb, A.; Hammann, T., Czech. J. Phys., 45, 699 (1995)
[26] Bennaceur, K.; Dobaczewski, J.; Płoszajczak, M., Phys. Rev. C. Phys. Rev. C, Phys. Lett. B, 496, 154 (2000)
[27] Stoitsov, M. V.; Dimitrova, S.; Pittel, S.; van Isacker, P.; Frank, A., Phys. Lett. B, 415, 1 (1997)
[28] Pittel, S.; Stoitsov, M. V., J. Phys. G: Nucl. Part. Phys., 24, 1461 (1998)
[29] M.V. Stoitsov, N. Michel, K. Matsuyanagi, nucl-th/0709.1006, Phys. Rev. C, submitted for publication; M.V. Stoitsov, N. Michel, K. Matsuyanagi, nucl-th/0709.1006, Phys. Rev. C, submitted for publication
[30] Abramowitz, M., Hypergeometric functions, (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions. Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55 (1972), National Bureau of Standards), (Ch. 15) · JFM 66.0320.03
[31] Forrey, R. C., J. Comp. Phys., 137, 79 (1997) · Zbl 0886.65009
[32] Numerical Aspects of Special Functions, N.M. Temme, Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16-20 September, http://www.cant.ua.ac.be/workshops/files/icnaam/temme.pdf; Numerical Aspects of Special Functions, N.M. Temme, Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16-20 September, http://www.cant.ua.ac.be/workshops/files/icnaam/temme.pdf
[33] Bühring, W., J. SIAM Math. Anal., 18, 884 (1987) · Zbl 0614.33005
[34] Becken, W.; Schmelcher, P., J. Comp. Appl. Math., 126, 449 (2000) · Zbl 0976.33003
[35] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C (1992), Cambridge University Press · Zbl 0778.65003
[36] Abramowitz, M., Gamma function and related functions, (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions. Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55 (1972), National Bureau of Standards), (Ch. 6) · JFM 66.0320.03
[37] Higham, N. J., Accuracy and Stability of Numerical Algorithms (1996), SIAM: SIAM Philadelphia · Zbl 0847.65010
[38] Gil, A.; Segura, J.; Temme, N. M., Math. Comp., 76, 1449 (2007) · Zbl 1117.33005
[39] Vidunas, R., J. Comp. Appl. Math., 153, 507 (2003) · Zbl 1018.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.