×

Fast and accurate algorithms for the computation of spherically symmetric nonlocal diffusion operators on lattices. (English) Zbl 1453.65443

Summary: We present a unified treatment of the Fourier spectra of spherically symmetric nonlocal diffusion operators. We develop numerical and analytical results for the class of kernels with weak algebraic singularity as the distance between source and target tends to 0. Rapid algorithms are derived for their Fourier spectra with the computation of each eigenvalue independent of all others. The algorithms are trivially parallelizable, capable of leveraging more powerful compute environments, and the accuracy of the eigenvalues is individually controllable. The algorithms include a Maclaurin series and a full divergent asymptotic series valid for any \(d\) spatial dimensions. Using Drummond’s sequence transformation, we prove linear complexity recurrence relations for degree-graded sequences of numerators and denominators in the rational approximations to the divergent asymptotic series. These relations are important to ensure that the algorithms are efficient, and also increase the numerical stability compared with the conventional algorithm with quadratic complexity.

MSC:

65R15 Numerical methods for eigenvalue problems in integral equations
35R09 Integro-partial differential equations
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

Software:

DLMF

References:

[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209 (2000) · Zbl 0970.74030
[2] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028 (2009) · Zbl 1181.35006
[3] Estrada-Rodriguez, G.; Gimperlein, H.; Painter, K. J., Fractional Patlak-Keller-Segel equations for chemotactic superdiffusion, SIAM J. Appl. Math., 78, 1155-1173 (2018) · Zbl 1390.92024
[4] Du, Q.; Tian, X., Mathematics of smoothed particle hydrodynamics, Part I: a nonlocal Stokes equation (2018)
[5] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54, 667-696 (2012) · Zbl 1422.76168
[6] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 493-540 (2013) · Zbl 1266.26020
[7] Zheng, C.; Hu, J.; Du, Q.; Zhang, J., Numerical solution of the nonlocal diffusion equation on the real line, SIAM J. Sci. Comput., 39, A1951-A1968 (2017) · Zbl 1376.82053
[8] Slevinsky, R. M.; Montanelli, H.; Du, Q., A spectral method for nonlocal diffusion operators on the sphere, J. Comput. Phys., 372, 893-911 (2018) · Zbl 1415.65238
[9] Du, Q.; Yang, J., Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications, J. Comput. Phys., 332, 118-134 (2017) · Zbl 1380.65435
[10] Slevinsky, R. M.; Safouhi, H., A comparative study of numerical steepest descent, extrapolation, and sequence transformation methods in computing semi-infinite integrals, Numer. Algorithms, 60, 315-337 (2012) · Zbl 1245.65030
[11] Drummond, J. E., A formula for accelerating the convergence of a general series, Bull. Aust. Math. Soc., 6, 69-74 (1972) · Zbl 0221.65006
[12] Levin, D., Development of non-linear transformations for improving convergence of sequences, Int. J. Comput. Math. B, 3, 371-388 (1973) · Zbl 0274.65004
[13] Sidi, A., A new method for deriving Padé approximants for some hypergeometric functions, J. Comput. Appl. Math., 7, 37-40 (1981) · Zbl 0452.41010
[14] Weniger, E. J., Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep., 10, 189-371 (1989)
[15] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge U. P.: Cambridge U. P. Cambridge, UK) · Zbl 1198.00002
[16] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Elsevier Academic Press: Elsevier Academic Press Burlington, MA · Zbl 1208.65001
[17] Watson, G. N., A Treatise on the Theory of Bessel Functions (1966), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0174.36202
[18] Michel, N.; Stoitsov, M. V., Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions, Comput. Phys. Commun., 178, 535-551 (2008) · Zbl 1196.33020
[19] Lanczos, C., A precision approximation of the gamma function, J. SIAM Ser. B Numer. Anal., 1, 86-96 (1964) · Zbl 0136.05201
[20] Levin, D.; Sidi, A., Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series, Appl. Math. Comput., 9, 175-215 (1981) · Zbl 0487.65003
[21] Borghi, R.; Weniger, E. J., Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation, Appl. Numer. Math., 94, 149-178 (2015) · Zbl 1325.65008
[22] Brezinski, C., Padé-Type Approximation and General Orthogonal Polynomials (1980), Birkhäuser · Zbl 0418.41012
[23] Gaudreau, P.; Slevinsky, R. M.; Safouhi, H., Computation of tail probability distributions via extrapolation methods and connection with rational and Padé approximants, SIAM J. Sci. Comput., 34, B65-B85 (2012) · Zbl 1241.65018
[24] Trinh, P. H.; Ward, M. J., The dynamics of localized spot patterns for reaction-diffusion systems on the sphere, Nonlinearity, 29, 766-806 (2016) · Zbl 1338.35248
[25] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.