×

Characterization of compact linear integral operators in the space of functions of bounded variation. (English) Zbl 1482.47088

Summary: Although various operators in the space of functions of bounded variation have been studied by quite a few authors, no simple necessary and sufficient conditions guaranteeing compactness of linear integral operators acting in such spaces have been known. The aim of the paper is to fully characterize the class of kernels which generate compact linear integral operators in the BV-space. Using this characterization we show that certain weakly singular and convolution operators (such as the Abel and Volterra operators), when considered as transformations of \(BV[a,b]\), are compact. We also provide a detailed comparison of those new necessary and sufficient conditions with various other conditions connected with compactness of linear (integral) operators in the space of functions of bounded variation which already exist in the literature.

MSC:

47G10 Integral operators
47B07 Linear operators defined by compactness properties
26A45 Functions of bounded variation, generalizations

References:

[1] Abramovich, Y. A., and C. D. Aliprantis: Problems in operator theory. -Grad. Stud. Math. 51, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1022.47002
[2] Appell, J.: Personal communication, 2018.
[3] Appell, J., J. Banaś, and N. Merentes: Bounded variation and around. -De Gruyter Series in Nonlinear Analysis and Applications 17, De Gruyter, Berlin, 2014. · Zbl 1282.26001
[4] Astudillo-Villaba, F. R., R. E. Castillo, and J. C. Ramos-Fernández: Multiplication operators on the spaces of functions of bounded p-variation in Wiener’s sense. -Real Anal. Exchange 42:2, 2017, 329-344. · Zbl 1488.26031
[5] Astudillo-Villalba, F. R., and J. C. Ramos-Fernández: Multiplication operators on the space of functions of bounded variation. -Demonstr. Math. 50:1, 2017, 105-115. · Zbl 1367.26030
[6] Bugajewska, D., D. Bugajewski, P. Kasprzak, and P. Maćkowiak: Nonautonomous superposition operators in the spaces of functions of bounded variation. -Topol. Methods Nonlinear Anal. 48:2, 2016, 637-660. · Zbl 1460.47028
[7] Bugajewska, D., and S. Reinwand: Some remarks on multiplier spaces II: BV-type spaces. -Z. Anal. Anwend. 38:3, 2019, 309-327. · Zbl 1426.26023
[8] Bugajewski, D.: On BV -solutions of some nonlinear integral equations. -Integral Equations Operator Theory 46, 2003, 387-398. · Zbl 1033.45002
[9] Bugajewski, D., and J. Gulgowski: On the characterization of compactness in the space of functions of bounded variation in the sense of Jordan. -J. Math. Anal. Appl. 484:2, 2020, 123752, 17 pages. · Zbl 1446.46016
[10] Bugajewski, D., J. Gulgowski, and P. Kasprzak: On integral operators and nonlinear integral equations in the spaces of functions of bounded variation. -J. Math. Anal. Appl. 444:1, 2016, 230-250. · Zbl 1355.45012
[11] Bugajewski, D., J. Gulgowski, J., and P. Kasprzak: On continuity and compactness of some nonlinear operators in the spaces of functions of bounded variation. -Ann. Mat. Pura Appl. (4) 195:5, 2016, 1513-1530. · Zbl 1362.47050
[12] Carothers, N. L.: Real analysis. -Cambridge Univ. Press, Cambridge, 2000. · Zbl 0997.26003
[13] Chaparro, H. C.: On multipliers between bounded variation spaces. -Ann. Funct. Anal. 9:3, 2018, 376-383. · Zbl 06946362
[14] Conway, J. B.: A course in functional analysis. Second edition. -Grad. Texts in Math. 96, Springer-Verlag, New York, 1990. · Zbl 0706.46003
[15] Dugundji, J.: Granas, A.: Fixed point theory. -Springer-Verlag, New York, 2003. · Zbl 1025.47002
[16] Dunford, N., and B. J. Pettis: Linear operations on summable functions. -Trans. Amer. Math. Soc. 47:3, 1940, 323-392. · JFM 66.0556.01
[17] Dunford, N., and J. T. Schwartz: Linear Operators. I. General Theory. -Pure Appl. Math. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. · Zbl 0084.10402
[18] Fonseca, I., and G. Leoni: Modern methods in the calculus of variations: L p spaces. -Springer Monogr. Math., Springer, New York, 2007. · Zbl 1153.49001
[19] Gelfand, I.: Abstrakte Funktionen und lineare Operatoren. -Rec. Math. [Mat. Sbornik] N.S. 4 (46):2, 1938, 235-286. · JFM 64.0368.02
[20] Gorenflo, R., and S. Vessella: Abel integral equations. Analysis and applications. -Lec-ture Notes in Math. 1461, Springer-Verlag, Berlin, 1991. · Zbl 0717.45002
[21] Gripenberg, G., S.-O. Londen, and Staffans, O.: Volterra integral and functional equa-tions. -Encyclopedia Math. Appl. 34, Cambridge Univ. Press, Cambridge, 1990. · Zbl 0695.45002
[22] Gulgowski, J.: Uniform continuity of nonautonomous superposition operators in ΛBV -spaces. -Forum Math. 31:3, 2019, 713-726. · Zbl 1480.47078
[23] Hewitt, E., and K. Stromberg: Real and abstract analysis. A modern treatment of the theory of functions of a real variable. -Grad. Texts in Math. 25, Springer-Verlag, Berlin-Heidelberg-New York, 1975. · Zbl 0307.28001
[24] Hildebrandt, T. H.: Linear operations on functions of bounded variation. -Bull. Amer. Math. Soc. 44:2, 1938, 75. · JFM 64.0386.01
[25] Hille, E., and R. S. Phillips: Functional analysis and semi-groups. -Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1996.
[26] Kantorovitch, L.: Linear operations in semi-ordered spaces I. -Rec. Math. [Mat. Sbornik] N.S. 7 (49):2, 1940, 209-284. · JFM 66.0527.01
[27] Kantorovitch, L.: Sur la représentation des opérations linéaires. -Compos. Math. 5, 1938, 119-165. · JFM 63.0353.02
[28] Łojasiewicz, S.: An introduction to the theory of real functions. Third edition. -A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1988. · Zbl 0653.26001
[29] Maćkowiak, P.: On the continuity of superposition operators in the space of functions of bounded variation. -Aequationes Math. 91:4, 2017, 759-777. · Zbl 1472.47050
[30] Maddaus, I., Jr.: On types of “weak” convergence in linear normed spaces. -Ann. of Math. (2) 42, 1941, 229-246. · JFM 67.0399.03
[31] Megginson, R. E.: An introduction to Banach space theory. -Grad. Texts in Math. 183, Springer-Verlag, New York, 1998. · Zbl 0910.46008
[32] Michalak, A.: On superposition operators in spaces of regular and of bounded variation functions. -Z. Anal. Anwend. 35:3, 2016, 285-308. · Zbl 1362.47051
[33] Monteiro, G. A., A. Slavík, and M. Tvrdý: Kurzweil-Stieltjes integral: theory and ap-plications. -Series in Real Analysis 15, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. · Zbl 1437.28001
[34] Morse, A. P.: Convergence in variation and related topics. -Trans. Amer. Math. Soc. 41:1, 1937, 48-83. · JFM 63.0200.01
[35] Phillips, R. S.: On linear transformations. -Trans. Amer. Math. Soc. 48:3, 1940, 516-541. · JFM 66.0554.01
[36] Prus-Wiśniowski, F., and W. H. Ruckle: The Banach spaces ΛBV are non-reflexive. -J. Math. Anal. Appl. 389:2, 2012, 1394-1396. · Zbl 1247.46029
[37] Riemenschneider, S. D.: Compactness of a class of Volterra operators. -Tohoku Math. J. (2) 26, 1974, 385-387. · Zbl 0289.47028
[38] Schwabik, Š.: On an integral operator in the space of functions with bounded variation. -Časopis Pěst. Mat. 97:3, 1972, 297-329. · Zbl 0255.47057
[39] Schwabik, Š.: On an integral operator in the space of functions with bounded variation. II. -Časopis Pěst. Mat. 102:2, 1977, 189-202. · Zbl 0355.47033
[40] Schwabik, Š., M. Tvrdý, and O. Vejvoda: Differential and integral equations: boundary value problems and adjoints. -D. Reidel Publishing Co., Dordrecht-Boston, Mass.-London, 1979. · Zbl 0417.45001
[41] Vulich, B., On a generalized notion of convergence in a Banach space. -Ann. of Math. (2) 38:1, 1937, 156-174. · Zbl 0016.06303
[42] Vulich, B.: Sur les formes générales de certaines opérations linéaires. -Rec. Math. [Mat. Sbornik] N.S. 2 (44):2, 1937, 275-305. · JFM 63.0355.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.