×

Banach envelopes of vector valued \(H^p\) spaces. (English) Zbl 1030.46022

Let \(X\) be a quasi-Banach space and \(\|\cdot \|_X: X\to [0,\infty[\) a \(q\)-norm on \(X\) which generates its topology. For \(0<p<1\) and \(d \in\mathbb{N}\) denote by \(H^p(\mathbb{D}^d,X)\) the Hardy space on the polydisk \(\mathbb{D}^d\) with values in \(X\) and define \(B_p(\mathbb{D}^d,X)\) as the space of all analytic functions \(F:\mathbb{D}^d\to X\) for which \[ \|F\|_{B_p(\mathbb{D}^d,X)}: = \int_{\mathbb{D}^d} \bigl\|F(z)\bigr \|_X\prod^d_{j=1} \bigl(1-|z_j |^2 \bigr)^{{1\over p}-2} dA_d(z) \] is finite, where \(A_d\) denotes the normalized Lebesgue measure on \(\mathbb{D}^d\). \(B_p(\mathbb{D}^d,X)\) is endowed with the quasi-norm \(\|\;\|_{B_p (\mathbb{D}^d,X)}\). The main result of the paper under review is to show that the Banach envelope \(\widetilde{H^p (\mathbb{D}^d,X)}\) of \(H^p(\mathbb{D}^d,X)\) is equal to \(B_p(\mathbb{D}^d, \widetilde X)\), where \(\widetilde X\) denotes the Banach envelope of \(X\).

MSC:

46E10 Topological linear spaces of continuous, differentiable or analytic functions
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
Full Text: DOI

References:

[1] Alexandrov, A. B., Essays on non locally convex Hardy classes. Complex Analysis and Spectral Theory, (Lecture Notes in Math 864 (1981), Springer: Springer Berlin-Heidelberg-New York), 1-89 · Zbl 0482.46035
[2] Blasco, O., Boundary values of functions invector-valued Hardy spaces and geometry of Banach spaces, J. Funct. Anal., 78, 346-364 (1988) · Zbl 0658.46031
[3] Bukhvalov, A. V., Hardy spaces of vector valued functions (Russian), Zap. Nauchn. Sem. LOMI, 65, 5-16 (1976) · Zbl 0345.46035
[4] Diestel, J.; Uhl, J. J., Vector Measures, (Mathematical Surveys No. 15 (1977), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0369.46039
[5] Duren, P. L., Theory of \(H^p\)-Spaces, (Pure Appl. Math., 38 (1970), Academic Press: Academic Press New York) · Zbl 0215.20203
[6] Duren, P. L.; Romberg, B. W.; Shields, A. L., Linear functionals on \(H^p\) spaces with \(0 < p < 1\), J. reine und angew. Math., 238, 32-60 (1969) · Zbl 0176.43102
[7] Frazier, A. P., The dual space of \(H^p\) of the polydisc for \(0 < p < 1\), Duke Math. J., 39, 369-379 (1972) · Zbl 0237.32005
[8] Gramsch, B., Integrations and holomorphic functions in locally bounded spaces (German), Math. Ann., 162, 190-210 (1965) · Zbl 0134.12303
[9] Hörmander, L., An Introduction to Complex Analysis in Several Variables (1966), D. Van Nostrand Company, Inc: D. Van Nostrand Company, Inc Princston, New Jersey York · Zbl 0138.06203
[10] Kalton, N. J., Analytic functions in non-locally convex spaces and applications, Studia Math., 83, 275-303 (1986) · Zbl 0634.46038
[11] Kalton, N. J., Plurisubharmonic functions on quasi-Banach spaces, Studia Math., 84, 297-324 (1986) · Zbl 0625.46021
[12] Kalton, N. J.; Peck, N. T.; Roberts, J. W., An F-space Sampler, (London Math. Soc. Lecture Notes, 89 (1985), Cambridge University Press) · Zbl 0556.46002
[13] Littlewood, J. E., On functions subharmonic in a circle III, (Proc. London Math. Soc., 32 (1931)), 222-234 · Zbl 0001.27802
[14] Michalak, A., Translations of functions in vector Hardy classes on the unit disk, Dissertationes Math., 359, 1-79 (1996) · Zbl 0872.46023
[15] Nawrocki, M., Duals of vector-valued \(H^p\)-spaces for \(0 < p < 1\), Indag. Math. N.S., 2, 2, 233-241 (1991) · Zbl 0735.46020
[16] Rolewicz, S., Metric Linear Spaces (1984), PWN: PWN Warszawa
[17] Rosenblum, M.; Rovniak, J., Topics in Hardy Classes and Univalent Functions (1994), Birkhäuser Verlag: Birkhäuser Verlag Basel, Boston, Berlin · Zbl 0816.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.