×

On a step method and a propagation of discontinuity. (English) Zbl 1438.34219

Summary: In this paper, we analyze how to compute discontinuous solutions for functional differential equations, looking at an approach which allows to study simultaneously continuous and discontinuous solutions. We focus our attention on the integral representation of solutions and we justify the applicability of such an approach. In particular, we improve the step method in such a way to solve a problem of vanishing discontinuity points. Our solutions are considered as regulated functions.

MSC:

34K05 General theory of functional-differential equations
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
65L03 Numerical methods for functional-differential equations

References:

[1] Appell J, Zabrejko PP (1990) Nonlinear superposition operators. Cambridge tracts in mathematics. Cambridge University Press, Cambridge · Zbl 0701.47041 · doi:10.1017/CBO9780511897450
[2] Aziz W, Merentes N, Sánchez JL (2014) A note on the composition of regular functions. J Anal Appl 20:1-5 · Zbl 1310.46025 · doi:10.1515/jaa-2014-0001
[3] Baker ChTH, Bocharov G, Rihan FAR (2008) Neutral delay differential equations in the modelling of cell growth. University of Chester, Chester · Zbl 1167.93003
[4] Baker ChTH, Lumb PM (2006) On integral equation formulations of a class of evolutionary equations with time-lag. J Integr Equ Appl 18:227-247 · Zbl 1135.45002 · doi:10.1216/jiea/1181075380
[5] Baker ChTH, Paul ChAH (2006) Discontinuous solutions of neutral delay differential equations. Appl Numer Math 56:284-304 · Zbl 1105.34055 · doi:10.1016/j.apnum.2005.04.009
[6] Baker ChTH, Bocharov GA (2005) Computational aspects of time-lag models of Marchuk type that arise in immunology. Russ J Numer Anal Math Modell 20:247-262 · Zbl 1081.65071 · doi:10.1515/1569398054308630
[7] Ballinger G, Liu X (2004) Continuous dependence on initial values for impulsive delay differential equations. Appl Math Lett 17:483-490 · Zbl 1085.34558 · doi:10.1016/S0893-9659(04)90094-8
[8] Ballinger G, Liu X (2000) Existence, uniqueness and boundedness results for impulsive delay differential equations. Appl Anal 74:71-93 · Zbl 1031.34081 · doi:10.1080/00036810008840804
[9] Bellen A, Guglielmi N (2009) Solving neutral delay differential equations with state-dependent delays. J Comput Appl Math 229:350-362 · Zbl 1166.65034 · doi:10.1016/j.cam.2008.04.015
[10] Bohner M, Peterson A (2012) Dynamic equations on time scales: an introduction with applications. Springer, Berlin · Zbl 0978.39001
[11] Brunner H, Zhang WK (1999) Primary discontinuities in solutions for delay integro-differential equations. Methods Appl Anal 6:525-534 · Zbl 0959.45002
[12] Cichoń M (2005) On solutions of differential equations in Banach spaces. Nonlinear Anal 60:651-667 · Zbl 1061.34043 · doi:10.1016/j.na.2004.09.041
[13] Federson M, Bianconi R (1999) Linear integral equations of Volterra concerning Henstock integrals. Real Anal Exch 25:389-417 · Zbl 1015.45001
[14] Federson M, Mesquita JG (2016) A new continuous dependence result for impulsive retarded functional differential equations. Czechoslov Math J 66:1-12 · Zbl 1413.34263 · doi:10.1007/s10587-016-0233-6
[15] Federson M, Mesquita JG, Slavík A (2012) Measure functional differential equations and functional dynamic equations on time scales. J Differ Equ 252:3816-3847 · Zbl 1239.34076 · doi:10.1016/j.jde.2011.11.005
[16] Federson M, Schwabik Š (2006) Generalized ODE approach to impulsive retarded functional differential equations. Differ Integr Equ 19:1201-1234 · Zbl 1212.34251
[17] Fetisova YuN, Sesekin AN (2005) Discontinuous solutions of differential equations with time delay. WSEAS Trans Syst 4:487-492 · Zbl 1128.34320
[18] Gordon RA (1994) The Integrals of Lebesgue, Denjoy, Perron and Henstock. AMS · Zbl 0807.26004
[19] Guglielmi N, Hairer E (2008) Computing breaking points in implicit delay differential equations. Adv Comput Math 29:229-247 · Zbl 1160.65041 · doi:10.1007/s10444-007-9044-5
[20] Hale JK (1971) Functional differential equations. Springer, Berlin · Zbl 0222.34003 · doi:10.1007/978-1-4615-9968-5
[21] Hale JK, Verduyn Lunel SM (2013) Introduction to functional differential equations, vol 99. Springer, Berlin · Zbl 0787.34002
[22] Hönig CS (1983) Equations intégrales generalisées et applications, Pub. Math. d’Orsay 5, · Zbl 0507.45017
[23] Kolmanovskii V, Myshkis A (2012) Applied theory of functional differential equations, vol 85. Springer, Berlin · Zbl 0917.34001
[24] Liz E, Pouso R (2002) Existence theory for first order discontinuous functional differential equations. Proc Am Math Soc 130:3301-3311 · Zbl 1013.34066 · doi:10.1090/S0002-9939-02-06480-8
[25] Michalak A (2016) On superposition operators in spaces of regular and of bounded variation functions. Z Anal Anwend 35:285-308 · Zbl 1362.47051 · doi:10.4171/ZAA/1566
[26] Michalak A (2016) On superposition operators in spaces \[BV_{\varphi }(0, 1)\] BVφ(0,1). J Math Anal Appl 443:1370-1388 · Zbl 1348.47047 · doi:10.1016/j.jmaa.2016.06.016
[27] Monteiro GA, Hanung UM, Tvrdý M (2016) Bounded convergence theorem for abstract Kurzweil-Stieltjes integral. Monatsh Math 180:409-434 · Zbl 1355.26008 · doi:10.1007/s00605-015-0774-z
[28] Monteiro GA, Tvrdý M (2012) On Kurzweil-Stieltjes integral in a Banach space. Math Bohem 137:365-381 · Zbl 1274.26014
[29] Pouso R, Rodríguez A (2015) A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives. Real Anal Exch 40:319-354 · Zbl 1384.26024 · doi:10.14321/realanalexch.40.2.0319
[30] Saks S (1937) Theory of the integral. IM PAN, Warszawa · Zbl 0017.30004
[31] Schwabik Š (1992) Linear operators in the space of regulated functions. Math Bohem 117:79-92 · Zbl 0790.47023
[32] Schwabik Š (1996) Abstract Perron-Stieltjes integral. Math Bohem 121:425-447 · Zbl 0879.28021
[33] Schwabik Š, Tvrdý M, Vejvoda O (1979) Differential and integral equations: boundary value problems and adjoints, Academia, Praha and D. Reidel, Dordrecht · Zbl 0417.45001
[34] Sesekin AN, Fetisova YuV (2010) Functional differential equations in the space of functions of bounded variation. Proc Steklov Inst Math 269:258-265 · Zbl 1230.34053 · doi:10.1134/S0081543810060210
[35] Sierpiński W (1933) Sur une propriété des fonctions qui n’ont que des discontinuités de première espéce. Bull Math Soc Sci Math Roum 16:1-4 (in French) · Zbl 0007.40202
[36] Sun Y, Michel AN, Zhai G (2005) Stability of discontinuous retarded functional differential equations with applications. IEEE Trans Autom Control 50:1090-1105 · Zbl 1365.34127 · doi:10.1109/TAC.2005.852563
[37] Tvrdý M (2002) Differential and integral equations in the space of regulated functions. Mem Differ Equ Math Phys 25:1-104 · Zbl 1081.34504
[38] Tvrdý M (1989) Regulated functions and the Perron-Stieltjes integral. Časopis pro Pěstování Matematiky 114:187-209 · Zbl 0671.26006
[39] Zavalishchin ST, Sesekin AN (1997) Discontinuous solutions to ordinary nonlinear differential equations in the space of functions of bounded variation. Dynamic impulse systems. Springer, Netherlands · doi:10.1007/978-94-015-8893-5_5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.