×

Large solutions of a class of degenerate equations associated with infinity Laplacian. (English) Zbl 1485.35193

Summary: In this article, we investigate the boundary blow-up problem \[ \begin{cases} \Delta_{\infty }^h u=f(x,u), & \text{ in }\Omega,\\ u=\infty ,& \text{ on }\partial \Omega, \end{cases} \] where \({\Delta }_{\infty }^h u=|Du|^{h-3} \langle{D}^2uDu, \,Du\rangle\) is the highly degenerate operator related to infinity Laplacian which comes from the absolutely minimizing Lipschitz extension and has a close relationship with the random game named tug-of-war. When the function \(f\) satisfies the Keller-Osserman-type condition, we establish the existence of the boundary blow-up viscosity solution. Moreover, for the separable case \(f(x,u)=b(x)g(u)\), we establish the asymptotic estimate of the blow-up solution near the boundary under some regular conditions of the domain. Based on the asymptotic estimate and comparison principle, we obtain the uniqueness of the large viscosity solution. During this procedure, we also study the non-existence of the large solution. For the separable case, we show that the Keller-Osserman-type condition is sufficient and necessary for the existence of the boundary blow-up viscosity solution.

MSC:

35J60 Nonlinear elliptic equations
35J70 Degenerate elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] G. Aronsson, Minimization problems for the functional supxF(x,f(x),f′(x)), Ark. Mat. 6 (1965), 33-53. · Zbl 0156.12502
[2] G. Aronsson, Minimization problems for the functional supxF(x,f(x),f′(x)) II, Ark. Mat. 6 (1966), 409-431.
[3] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. · Zbl 0158.05001
[4] G. Aronsson, Minimization problems for the functional supxF(x,f(x),f′(x)) III, Ark. Mat. 7 (1969), 509-512. · Zbl 0181.11902
[5] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), 51-74. · Zbl 0789.35008
[6] S. Armstrong and C. Smart, An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differ. Equ. 37 (2010), 381-384. · Zbl 1187.35104
[7] M. G. Crandall, G. Gunnarsson, and P. Wang, Uniqueness of infty-harmonic functions and the eikonal equation, Comm. Partial Diff. Equ. 32 (2007), 1587-1615. · Zbl 1135.35048
[8] M. G. Crandall, L. C. Evans, and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differ. Equ. 13 (2001), 123-139. · Zbl 0996.49019
[9] G. Aronsson, M. G. Crandall, and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004), 439-505. · Zbl 1150.35047
[10] G. Lu and P. Wang, Inhomogeneous infinity Laplace equation, Adv. Math. 217 (2008), no. 4, 1838-1868. · Zbl 1152.35042
[11] T. Bhattacharya and A. Mohammed, On solutions to Dirichlet problems involving the infinity-Laplacian, Adv. Calc. Var. 4 (2011), 445-487. · Zbl 1232.35056
[12] T. Bhattacharya and A. Mohammed, Inhomogeneous Dirichlet problems involving the infinity-Laplacian, Adv. Differ. Equ. 17 (2012), no. 3-4, 225-266. · Zbl 1258.35094
[13] E. N. Barron, R. R. Jensen, and C. Y. Wang, The Euler equation and absolute minimizers of L∞ functionals, Arch. Ration. Mech. Anal. 157 (2001), 255-283. · Zbl 0979.49003
[14] G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Diff. Equ. 26 (2001), 2323-2337. · Zbl 0997.35023
[15] Y. Yu, Uniqueness of values of Aronsson operators and running costs in “tug-of-war” games, Annales de Linstitut Henri Poincare Non Linear Analysis 26 (2009), no. 4, 1299-1308. · Zbl 1176.35074
[16] Y. Peres, O. Schramm, S. Sheffield, and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. · Zbl 1206.91002
[17] G. Lu and P. Wang, A PDE perspective of the normalized infinity Laplacian, Comm. Part. Diff. Equ. 33 (2008), no. 10, 1788-1817. · Zbl 1157.35388
[18] G. Lu and P. Wang, Infinity Laplace equation with non-trivial right-hand side, Electron. J. Differ. Equ. 77 (2010), 517-532. · Zbl 1194.35194
[19] G. Lu and P. Wang, A uniqueness theorem for degenerate elliptic equations, Seminario Interdisciplinare di Matematica 7 (2008), 207-222. · Zbl 1187.35109
[20] E. N. Barron, L. C. Evans, and R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc. 360 (2008), 77-101. · Zbl 1125.35019
[21] L. C. Evans, The 1-Laplacian, the infinity Laplacian and differential games, Contemp. Math. 446 (2007), 245-254. · Zbl 1200.35114
[22] J. D. Rossi, Tug-of-war games and PDEs, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 2, 319-369. · Zbl 1242.35091
[23] F. Liu, An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term, Commun Pure Appl. Anal. 17 (2018), no. 6, 2395-2421. · Zbl 1395.35071
[24] R. López-Soriano, J. C. Navarro-Climent, and J. D. Rossi, The infinity Laplacian with a transport term, J. Math. Anal. Appl. 398 (2013), 752-765. · Zbl 1257.35076
[25] Y. Peres, G. Pete, and S. Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. PDE. 38 (2010), no. 3-4, 541-564. · Zbl 1195.91007
[26] V. Caselles, J. M. Morel, and C. Sbert, An axiomatic approach to image interpolation, IEEE Trans. Image Process 7 (1998), no. 3, 376-386. · Zbl 0993.94504
[27] A. Elmoataz, M. Toutain, and D. Tenbrinck, On the p-Laplacian and infty-Laplacian on graphs with applications in image and data processing, SIAM J. Imaging Sci. 8 (2015), 2412-2451. · Zbl 1330.35488
[28] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, 1-66. · Zbl 0920.49004
[29] J. Garcia-Azorero, J. J. Manfredi, I. Peral, and J. D. Rossi, The Neumann problem for the ∞-Laplacian and the Monge-Kantorovich mass transfer problem, Nonlinear Analysis: Theory Meth. Appl. 66 (2007), 349-366. · Zbl 1387.35286
[30] P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian, Adv. Calc. Var. 1 (2008), 271-289. · Zbl 1158.35371
[31] A. Mohammed and S. Mohammed, On boundary blow-up solutions to equations involving the ∞-Laplacian, Nonlinear Analysis Theory Meth. Appl. 74 (2011), 5238-5252. · Zbl 1223.35141
[32] A. Mohammed and S. Mohammed, Boundary blow-up solutions to degenerate elliptic equations with non-monotone inhomogeneous terms, Nonlinear Analysis Theory Meth. Appl. 75 (2012), 3249-3261. · Zbl 1241.35101
[33] W. Wang, H. Gong, and S. Zheng, Asymptotic estimates of boundary blow-up solutions to the infinity Laplace equations, J. Differ. Equ. 256 (2014), 3721-3742. · Zbl 1287.35038
[34] Z. Zhang, Boundary behavior of large viscosity solutions to infinity Laplace equations, Z. Angew. Math. Phys. 66 (2015), 1453-1472. · Zbl 1321.35049
[35] Y. J. Chen, Boundary behavior for the large viscosity solutions to equations involving the infinity-Laplacian, Applicable Anal. 96 (2017), no. 12, 2065-2074. · Zbl 1380.35077
[36] L. Mi and C. Chen, The exact blow-up rate of large solutions to infinity-laplacian equation, J. Appl. Anal. Comput. 11 (2021), no. 2, 858-873. · Zbl 07905150
[37] H. Wan, The exact asymptotic behavior of boundary blow-up solutions to infinity Laplacian equations, Zeitschrift für angewandte Mathematik und Physik 67 (2016), no. 4, 97. · Zbl 1366.35046
[38] H. Wan, The second order expansion of boundary blow-up solutions for infinity-Laplacian equations, J. Math. Anal. Appl. 436 (2016), 179-202. · Zbl 1331.35059
[39] M. G. Crandall, H. Ishii, and P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67. · Zbl 0755.35015
[40] F. Liu and F. Jiang, Parabolic biased infinity Laplacian equation related to the biased Tug-of-War, Adv. Nonlinear Stud. 19 (2019), no. 1, 89-112. · Zbl 1412.35163
[41] M. G. Crandall, A visit with the infty-Laplace equation, Calc. Var. Nonl. PDEs, Lecture Notes in Mathematics-Springer-verlag, 1927 (2008), 75-122. · Zbl 1357.49112
[42] C. C. Li, F. Liu, and P. B. Zhao, Boundary blow-up solutions to equation involved in infinity Laplacian, Under review.
[43] F. Liu and X. P. Yang, Solutions to an inhomogeneous equation involving infinity-Laplacian, Nonlinear Anal Theory Meth Appl. 75 (2012), 5693-5701. · Zbl 1253.35063
[44] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. · Zbl 0617.26001
[45] E. Seneta, Regularly varying functions, Lecture Notes in Mathematics, vol. 508, Springer-Verlag, Berlin, 1976. · Zbl 0324.26002
[46] Y. J. Chen and M. X. Wang, Boundary blow-up solutions for p-Laplacian elliptic equations of logistic type, Proc. Royal Soc. Edingburg 142A (2012), 691-714. · Zbl 1259.35099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.