×

Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control. (English) Zbl 07649322

Summary: In this article, the fixed-time and predefined-time synchronization of fully complex-valued discontinuous delayed neural networks are studied with the non-separation approach. Above all, to accomplish specific control objectives, two novel types of complex-valued controllers are designed, one of which is non-chattering, and the other one is saturation. Subsequently, in light of the Filippov solution theory and the complex variable sign function theory, several novel concise and sufficient criteria are established to achieve fixed/predefined-time synchronization for the addressed systems based on the fixed/predefined-time stability theory respectively. Simultaneously, the settling time of fixed-time synchronization is explicitly reckoned. The predefined synchronization time is irrelevant to any parameter and any initial value, and the upper bound of the desired settling time can be set in advance for different applications. Especially, to simplify the theoretical analysis and derivation process, the direct analysis method is used instead of the ordinary separation method. Additionally, under the two different types of controllers, the chattering phenomenon is effectively eliminated or reduced. It is not only proved theoretically but also supported by numerical simulation results in this paper. However, in the previous works have only numerical simulations without theoretical proof. Eventually, two numerical examples with simulation results are provided to substantiate the effectiveness of the obtained theoretical results.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Liu, Y.; Zhang, D. D.; Lou, J. G.; Lu, J. Q.; Cao, J. D., Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches, IEEE Trans. Neural Netw. Learn. Syst., 29, 9, 4201-4211 (2018)
[2] Sun, B.; Wang, S. B.; Cao, Y. T.; Guo, Z. Y.; Huang, T. W.; Wen, S. P., Exponential synchronization of memristive neural networks with time-varying delays via quantized sliding-mode control, Neural Netw., 126, 163-169 (2020) · Zbl 1471.93228
[3] Yang, W. G.; Yu, W. W.; Cao, J. D.; Alsaadi, F. E.; Hayat, T., Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulse, Neural Netw., 98, 122-153 (2018) · Zbl 1442.34133
[4] Mao, X. C.; Wang. Stability, Z. H., Stability, bifurcation, and synchronization of delay-coupled ring neural networks, Nonlinear Dynam., 84, 2, 1063-1078 (2016) · Zbl 1354.93133
[5] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional-order neural networks, Neural Netw., 32, 245-256 (2012) · Zbl 1254.34103
[6] Qin, X. L.; Wang, C.; Li, L. X.; Peng, H. P.; Yang, Y. X.; Ye, L., Finite-time projective synchronization of memristor-based neural networks with leakage and time-varying delays, Physica A, 531, Article 121788 pp. (2019) · Zbl 07569475
[7] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 8, 821-824 (1990) · Zbl 0938.37019
[8] Wen, S. P.; Zeng, Z. G.; Huang, T. W.; Zhang, Y. D., Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators, IEEE Trans. Fuzzy Syst., 22, 6, 1704-1713 (2014)
[9] Li, H. F.; Li, C. D.; Ouyang, D. Q.; Nguang, S. K., Impulsive synchronization of unbounded delayed inertial neural networks with actuator saturation and sampled-data control and its application to image encryption, IEEE Trans. Neural Netw. Learn. Syst., 32, 14, 1460-1473 (2021)
[10] Shanmugam, L.; Mani, P.; Rajan, R.; Joo, Y. H., Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50, 3, 911-922 (2020)
[11] Yang, X. S.; Cao, J. D.; Liang, J. L., Exponential synchronization of memristive neural networks with delays: Interval matrix method, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1878-1888 (2017)
[12] Gu, Y. J.; Yu, Y. G.; Wang, H., Projective synchronization for fractional-order memristor-based neural networks with time delays, Neural Comput. Appl., 31, 10, 6039-6054 (2019) · Zbl 1499.39089
[13] Zhang, S.; Yang, Y. Q.; Sui, X.; Xu, X. Y., Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment, Physica A, 534, Article 122258 pp. (2019) · Zbl 07570696
[14] Xu, D. S.; Liu, Y.; Liu, M., Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control, Fuzzy Sets and Systems, 411, 85-104 (2012) · Zbl 1467.93281
[15] Cai, Z. W.; Huang, L. H.; Zhang, L. L., Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations, Appl. Math. Model., 47, 208-226 (2017) · Zbl 1446.93003
[16] Hu, C.; Yu, J.; Chen, Z. H.; Jiang, H. J.; Huang, T. W., Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Netw., 89, 74-83 (2017) · Zbl 1441.93279
[17] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Control, 57, 8, 2106-2110 (2012) · Zbl 1369.93128
[18] Basin, M. V.; Yu, P.; Shtessel, Y. B., Hypersonic missile adaptive sliding mode control using finite-and fixed-time observers, IEEE Trans. Ind. Electron., 65, 1, 930-941 (2018)
[19] Jiang, B. Y.; Hu, Q. L.; Friswell, M., Fixed-time Rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness, IEEE Trans. Aerosp. Electron. Syst., 52, 4, 1576-1586 (2016)
[20] Xiao, J.; Zeng, Z. G.; Wu, A. L.; Wen, S. P., Fixed-time synchronization of delayed Cohen-Grossberg neural networks based on a novel sliding mode, Neural Netw., 128, 1-12 (2020) · Zbl 1471.93210
[21] Abdurahman, A.; Jiang, H. J.; Hu, C., Improved fixed-time stability results and application to synchronization of discontinuous neural networks with state-dependent switching, Internat. J. Robust Nonlinear Control, 31, 12, 5725-5744 (2021) · Zbl 1525.93365
[22] Wan, Y.; Cao, J. D.; Wen, G. H.; Yu, W. W., Robust fixed-time synchronization of delayed Cohen-Grossberg neural networks, Neural Netw., 73, 86-94 (2016) · Zbl 1398.34111
[23] Chen, C.; Li, L. X.; Peng, H. P.; Yang, Y. X.; Mi, L.; Zhao, H., A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks, Neural Netw., 123, 412-419 (2020) · Zbl 1443.93128
[24] Li, N.; Wu, X. Q.; Feng, J. W.; Xu, Y. H.; Lu, J. H., Fixed-time synchronization of coupled neural networks with discontinuous activation and mismatched parameters, IEEE Trans. Neural Netw. Learn. Syst., 32, 6, 2470-2482 (2021)
[25] Jimenez-Rodriguez, E.; Sanchez-Torres, J. D.; Loukianov, A. G., On optimal predefined-time stabilization, Internat. J. Robust Nonlinear Control, 27, 17, 3620-3642 (2017) · Zbl 1386.93254
[26] Aldana-Lopez, R.; Gomez-Gutierrez, D.; Jimenez-Rodriguez, E.; Sanchez-Torres, J. D.; Defoort, M., Enhancing the settling time estimation of a class of fixed-time stable systems, Internat. J. Robust Nonlinear Control, 29, 12, 4135-4148 (2019) · Zbl 1426.93236
[27] Wang, Y.; Wang, Z.; Chen, M. S.; Kong, L. Y., Predefined-time sliding mode formation control for multiple autonomous underwater vehicles with uncertainties, Chaos Solitons Fractals, 144, Article 110680 pp. (2021)
[28] Lin, W. T.; Wang, Y. W.; Li, C. J.; Yu, X. H., Predefined-time optimization for distributed resource allocation, J. Franklin Inst. B, 357, 11323-11348 (2020) · Zbl 1450.91017
[29] Hu, C.; Jiang, H. J., Special functions-based fixed-time estimation and stabilization for dynamic systems, IEEE Trans. Syst. Man Cybern.-Syst., 52, 5, 3251-3262 (2022)
[30] He, Q. S.; Li, C. F.; Ma, Y. C., Fixed-time and preassigned-time stochastic synchronization of complex networks via quantized event-triggered strategy, Nolinear Dynam., 106, 1, 543-564 (2021)
[31] Chen, C.; Mi, L.; Liu, Z. Q.; Qiu, B. L.; Zhang, H.; Xu, L. J., Predefined-time synchronization of competitive neural networks, Neural Netw., 142, 492-499 (2021) · Zbl 1526.93218
[32] Shi, Y. C.; Cao, J. D.; Cheng, G. R., Exponential stability of complex-valued memristor-based neural networks with time-varying delays, Appl. Math. Comput., 313, 222-234 (2017) · Zbl 1426.92004
[33] Li, H. L.; Hu, C.; Cao, J. D.; Jiang, H. J.; Alsaedi, A., Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays, Neural Netw., 118, 102-109 (2019) · Zbl 1443.93049
[34] Zhang, Z. Q.; Li, A. L.; Yu, S. H., Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method, Neurocomputing, 318, 248-260 (2018)
[35] Nitta, T., Solving the xor problem and the detection of symmetry using a single complex-valued neuron, Neural Netw., 16, 1101-1105 (2003)
[36] Hirose, A., Dynamics of fully complex-valued neural networks, Electron. Lett., 28, 6, 1492-1494 (1992)
[37] Jankowski, S.; Lozowski, A.; Zurada, J. M., Complex-valued multistate neural associative memory, IEEE Trans. Neural Netw., 7, 6, 1491-1496 (1996)
[38] Amin, M. F.; Murase, K., Single-layered complex-valued neural network for real-valued classification problems, Neurocomputing, 72, 4-6, 945-955 (2009)
[39] Liu, D.; Zhu, S.; Sun, K. L., Global anti-synchronization of complex-valued memristive neural networks with time delays, IEEE Trans. Cybern., 49, 5, 1735-1747 (2019)
[40] Long, C. Q.; Zhang, G. D.; Hu, J. H., Fixed-time synchronization for delayed inertial complex-valued neural networks, Appl. Math. Comput., 405, Article 126272 pp. (2021) · Zbl 1510.93353
[41] Aouiti, C.; Bessifi, M., Sliding mode control for finite-time and fixed-time synchronization of delayed complex-valued recurrent neural networks with discontinuous activation functions and nonidentical parameters, Eur. J. Control, 59, 109-122 (2021) · Zbl 1466.93025
[42] Wu, E. L.; Yang, X. S.; Xu, C.; Alsaadi, F. E.; Hayat, T., Finite-time synchronization of complex-valued delayed neural networks with discontinuous activations, Asian J. Control, 20, 6, 2237-2247 (2018) · Zbl 1407.93220
[43] Ding, X. S.; Cao, J. D.; Alsaedi, A.; Alsaadi, F. E.; Hayat, T., Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions, Neural Netw., 90, 42-55 (2017) · Zbl 1439.93015
[44] Gan, Q. T.; Li, L. C.; Yang, J.; Qin, Y.; Meng, M. Q., Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks, IEEE Trans. Neural Netw. Learn. Syst., 33, 10, 5542-5556 (2022)
[45] Wei, X. F.; Zhang, Z. Y.; Liu, M. J.; Wang, Z.; Chen, J., Anti-synchronization for complex-valued neural networks with leakage delay and time-varying delays, Neurocomputing, 412, 312-319 (2020)
[46] Forti, M.; Nistri, P., Global convergence of neural networks with discontinuous neuron activations, IEEE Trans. Circuits Syst. I. Regul. Pap., 50, 11, 1421-1435 (2003) · Zbl 1368.34024
[47] Effati, S.; Baymani, M., A new nonlinear neural network for solving convex nonlinear programming problems, Appl. Math. Comput., 168, 2, 1370-1379 (2005) · Zbl 1081.65054
[48] Arjmandzadeh, Z.; Safi, M.; Nazemi, A., A new neural network model for solving random interval linear programming problems, Neural Netw., 89, 11-18 (2017) · Zbl 1443.90259
[49] Sanchez-Torres, J. D.; Munoz-Vazquez, A. J.; Defoort, M.; Aldana-Lopez, R.; Gomez-Gutierrez, D., Predefined-time integral sliding mode control of second-order systems, Internat. J. Systems Sci., 51, 16, 3425-3435 (2020) · Zbl 1483.93067
[50] Li, H. L.; Jiang, H. J.; Cao, J. D., Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delay, Neurocomputing, 385, 211-219 (2020)
[51] Xiong, K. L.; Yu, J.; Hu, C.; Jiang, H. J., Synchronization in finite/fixed time of fully complex-valued dynamical networks via nonseparation approach, J. Franklin Inst. B, 357, 1, 473-493 (2020) · Zbl 1429.93145
[52] Feng, L.; Yu, J.; Hu, C.; Yang, C. D.; Jiang, H. J., Nonseparation method-based finite/fixed-time synchronization of fully complex-valued discontinuous neural networks, IEEE Trans. Cybern., 51, 6, 3212-3223 (2021)
[53] Zhang, W. L.; Li, C. D.; Huag, T. W.; Huang, J. J., Finite-time synchronization of neural networks with multiple proportional delays via non-chattering control, Int. J. Control Autom. Syst., 16, 5, 2473-2479 (2018)
[54] Yang, X. S.; Ho, D. W.C.; Lu, J. Q.; Song, Q., Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Trans. Fuzzy Syst., 23, 6, 2302-2316 (2015)
[55] Duan, L.; Shi, M.; Wang, Z. Y.; Huang, L. H., Global exponential synchronization of delayed complex-valued recurrent neural networks with discontinuous activations, Neural Process. Lett., 50, 3, 2183-2200 (2019)
[56] Wang, L. M.; Zeng, Z. G.; Hu, J. H.; Wang, X. P., Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations, Neural Netw., 87, 122-131 (2017) · Zbl 1440.93101
[57] Aubin, J.; Frankowska, H., Set-Valued Analysis (1990), Birkhauser: Birkhauser Boston · Zbl 0713.49021
[58] Aouiti, C.; Li, X. D.; Miaadi, F., Finite-time stabilization of uncertain delayed-hopfield neural networks with a time-varying leakage delay via non-chattering control, Sci. China-Technol. Sci., 62, 7, 1111-1122 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.