×

Elliptic problems involving the 1-Laplacian and a singular lower order term. (English) Zbl 1423.35125

This paper deals with the Dirichlet problem for the 1-Laplacian \(\Delta_1 u= \text{div}(\frac{Du}{|Du|})\) and having singular lower order term \(f(x)/u^\gamma\), \(f\in L^N(\Omega)\), \(f\ge 0\) a.e., \(0<\gamma\le 1\). \(\Omega\subset \mathbb{R}^N\) is a bounded open domain with Lipschitz boundary \(\partial\Omega\). The considerations are in \(BV(\Omega)\), the space of all functions \(u\in L^1(\Omega)\) whose distributional derivatives \(Du\) are Radon measures with finite total variation. The notion of weak solution \(u\ge 0\) a.e., \(u\in BV(\Omega)\cap L^\infty(\Omega)\) of the above-mentioned Dirichlet problem with \(u=0\) on \(\partial\Omega\) is given by Def. 4.1. The solution is obtained in Th. 4.5 as the limit of a singular bvp with principal part the \(p\)-Laplacian \(\Delta_p\), \(p>1\) as \(p\to 1\). The latter Dirichlet problems possess unique bounded weak solutions \(u_p\) for fixed \(p>1\) (Theorem 3.4).
In the special case \(f>0\) a.e., \(u\) has several interesting properties and among them \(u>0\) a.e., and \(u\) is unique. At the end of the paper explicit examples of 1-dimensional solutions for \(f\ge 0\), \(f\not\equiv 0\) are given. The authors show that uniqueness does not hold in general.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J75 Singular elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] L.Ambrosio, N.Fusco and D.Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs (Clarendon Press, Oxford, 2000). · Zbl 0957.49001
[2] F.Andreu, C.Ballester, V.Caselles and J. M.Mazón, ‘The Dirichlet problem for the total variation flow’, J. Funct. Anal.180 (2001) 347-403. · Zbl 0973.35109
[3] F.Andreu, A.Dall’Aglio and S. Segurade León, ‘Bounded solutions to the 1‐Laplacian equation with a critical gradient term’, Asymptot. Anal.80 (2012) 21-43. · Zbl 1260.35038
[4] F.Andreu-Vaillo, V.Caselles and J. M.Mazón, Parabolic quasilinear equations minimizing linear growth functionals, Progress in Mathematics 223 (Birkhäuser, Basel, 2004). · Zbl 1053.35002
[5] G.Anzellotti, ‘Pairings between measures and bounded functions and compensated compactness’, Ann. Mat. Pura Appl. (4) 135 (1983) 293-318. · Zbl 0572.46023
[6] D.Arcoya and L.Moreno‐Mérida, ‘Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity’, Nonlinear Anal.95 (2014) 281-291. · Zbl 1285.35013
[7] G.Bellettini, V.Caselles and M.Novaga, ‘The total variation flow in \(\mathbb{R}^N\)’, J. Differential Equations184 (2002) 475-525. · Zbl 1036.35099
[8] L.Boccardo and L.Orsina, ‘Semilinear elliptic equations with singular nonlinearities’, Calc. Var. Partial Differential Equations37 (2010) 363-380. · Zbl 1187.35081
[9] A.Canino and M.Degiovanni, ‘A variational approach to a class of singular semilinear elliptic equations’, J. Convex Anal.11 (2004) 147-162. · Zbl 1073.35092
[10] A.Canino, B.Sciunzi and A.Trombetta, ‘Existence and uniqueness for \(p\)‐Laplace equations involving singular nonlinearities’, NoDEA Nonlinear Differential Equations Appl. (2) 23 (2016) 8-18. · Zbl 1341.35074
[11] V.Caselles, ‘On the entropy conditions for some flux limited diffusion equations’, J. Differential Equations250 (2011) 3311-3348. · Zbl 1231.35101
[12] T.Chan, S.Esedoglu, F.Park and A.Yip, Total variation image restoration: overview and recent developments, Handbook of mathematical models in computer vision (eds. N.Paragios (ed.), Y.Chen (ed.) and O. D.Faugeras (ed.); Springer-Science, New York, 2006)] 17-31.
[13] G.-Q.Chen and H.Frid, ‘Divergence-measure fields and hyperbolic conservation laws’, Arch. Ration. Mech. Anal.147 (1999) 89-118. · Zbl 0942.35111
[14] M.Cicalese and C.Trombetti, ‘Asymptotic behaviour of solutions to \(p\)‐Laplacian equation’, Asymptot. Anal.35 (2003) 27-40. · Zbl 1065.35111
[15] G. M.Coclite and M. M.Coclite, ‘On a Dirichlet problem in bounded domains with singular nonlinearity’, Discrete Contin. Dyn. Syst.33 (2013) 4923-4944. · Zbl 1279.35050
[16] M. G.Crandall, P. H.Rabinowitz and L.Tartar, ‘On a Dirichlet problem with a singular nonlinearity’, Comm. Partial Differential Equations2 (1977) 193-222. · Zbl 0362.35031
[17] L.De Cave, ‘Nonlinear elliptic equations with singular nonlinearities’, Asymptot. Anal.84 (2013) 181-195. · Zbl 1282.35180
[18] V. DeCicco, D.Giachetti, F.Oliva and F.Petitta, ‘Dirichlet problems for singular elliptic equations with general nonlinearities’, Preprint, 2018, arXiv:1801.03444.
[19] F.Demengel, ‘On some nonlinear equation involving the 1‐Laplacian and trace map inequalities’, Nonlinear Anal.48 (2002) 1151-1163. · Zbl 1016.49001
[20] L. C.Evans and R. F.Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992). · Zbl 0804.28001
[21] W.Fulks and J. S.Maybee, ‘A singular nonlinear equation’, Osaka J. Math.12 (1960) 1-19. · Zbl 0097.30202
[22] D.Giachetti, P. J.Martínez‐Aparicio and F.Murat, ‘A semilinear elliptic equation with a mild singularity at \(u = 0\): existence and homogenization’, J. Math. Pures Appl.107 (2017) 41-77. · Zbl 1371.35112
[23] D.Giachetti, P. J.Martínez‐Aparicio and F.Murat, ‘Advances in the study of singular semilinear elliptic problems’, Trends in differential equations and applications, SEMA‐SIMAI Springer Series 8 (eds. by F. OrtegónGallego (ed.), V. RedondoNeble (ed.) and J. R. RodríguezGalván (ed.); Springer International Publishing, Switzerland, 2016) 221-241. · Zbl 1403.35109
[24] D.Giachetti, P. J.Martinez‐Aparicio and F.Murat, ‘Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at \(u = 0\)’, Ann. Scuola Norm. Sup. Pisa18 (2018) 1395-1442. · Zbl 1407.35076
[25] D.Giachetti, P. J.Martínez‐Aparicio and F.Murat, ‘Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at \(u = 0\) in a domain with many small holes’, J. Funct. Anal.274 (2018) 1747-1789. · Zbl 1387.35030
[26] J.Giacomoni, I.Schindler and P.Takac, ‘Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007) 117-158. · Zbl 1181.35116
[27] G.Huisken and T.Ilmanen, ‘The inverse mean curvature flow and the Riemannian Penrose inequality’, J. Differential Geom.59 (2001) 353-438. · Zbl 1055.53052
[28] P.Juutinen, ‘p‐Harmonic approximation of functions of least gradient’, Indiana Univ. Math. J.541015-1029. · Zbl 1100.49025
[29] B.Kawohl, ‘On a family of torsional creep problems’, J. reine angew. Math.410 (1990) 1-22. · Zbl 0701.35015
[30] A. C.Lazer and P. J.McKenna, ‘On a singular nonlinear elliptic boundary‐value problem’, Proc. Amer. Math. Soc.111 (1991) 721-730. · Zbl 0727.35057
[31] N. LocHoang and K.Schmitt, ‘Boundary value problems for singular elliptic equations’, Rocky Mountain J. Math.41 (2011) 555-572. · Zbl 1218.35107
[32] A.Mercaldo, J. D.Rossi, S. Segurade León and C.Trombetti, ‘Behaviour of \(p\)-Laplacian problems with Neumann boundary conditions when \(p\) goes to 1’, Commun. Pure Appl. Anal.12 (2013) 253-267. · Zbl 1266.35111
[33] A.Mercaldo, S. Segurade León and C.Trombetti, ‘On the behaviour of the solutions to \(p\)-Laplacian equations as \(p\) goes to 1’, Publ. Mat.52 (2008) 377-411. · Zbl 1158.35024
[34] A.Mercaldo, S. Segurade León and C.Trombetti, ‘On the solutions to 1-Laplacian equation with \(L^1\) data’, J. Funct. Anal.256 (2009) 2387-2416. · Zbl 1169.35029
[35] L.Mi, ‘Existence and boundary behavior of solutions to p‐Laplacian elliptic equations’, Bound. Value Probl. (2016) https://doi.org/10.1186/s13661‐016‐0627‐2. · Zbl 1383.35096 · doi:10.1186/s13661‐016‐0627‐2
[36] A.Mohammed, ‘Positive solutions of the p‐Laplace equation with singular nonlinearity’, J. Math. Anal. Appl.352 (2009) 234-245. · Zbl 1168.35014
[37] F.Oliva and F.Petitta, ‘Finite and infinite energy solutions of singular elliptic probems: Existence and uniqueness’, J. Differential Equations264 (2018) 311-340. · Zbl 1380.35101
[38] L.Orsina and F.Petitta, ‘A Lazer‐McKenna type problem with measures’, Differential Integral Equations29 (2016) 19-36. · Zbl 1349.35120
[39] K.Perera and E.Silva, ‘On singular \(p\)‐Laplacian problems’, Differential Integral Equations20 (2007) 105-120. · Zbl 1212.34048
[40] L. I.Rudin, S.Osher and E.Fatemi, ‘Nonlinear total variation based noise removal algorithms’, Physica D.60 (1992) 259-268. · Zbl 0780.49028
[41] P.Sternberg, G.Williams and W. P.Ziemer, ‘Existence, uniqueness, and regularity for functions of least gradient’, J. reine angew. Math.430 (1992) 35-60. · Zbl 0756.49021
[42] C. A.Stuart, ‘Existence and approximation of solutions of non‐linear elliptic equations’, Math. Z.147 (1976) 53-63. · Zbl 0324.35037
[43] W. P.Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120 (Springer, New York, 1989). · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.