×

On the sectional category of subgroup inclusions and Adamson cohomology theory. (English) Zbl 1485.55004

In the paper under review the authors study the sectional category of subgroup inclusions. Given any group \(G\) and a subgroup \(H\), they define the sectional category of the inclusion, \(\mbox{secat}(H\hookrightarrow G),\) as the ordinary sectional category of the map \(K(H,1)\rightarrow K(G,1)\) between the corresponding Eilenberg-MacLane spaces. This definition generalizes the already established notion of topological complexity of a group \(\pi \), originally defined as \(\mbox{TC}(\pi ):=\mbox{TC}(K(\pi,1))\). In this sense, \(\mbox{TC}(\pi )\) can be also seen as the sectional category of \(\Delta _{\pi}\hookrightarrow \pi \times \pi \) where \(\Delta _{\pi}\) denotes the diagonal subgroup of \(\pi \times \pi .\) Among their results we can mention an extension of a certain characterization of topological complexity of a group, by M. Farber et al. [Algebr. Geom. Topol. 19, No. 4, 2023–2059 (2019; Zbl 1471.55003)], to this new setting of sectional category of group inclusions. The authors also introduce Adamson cohomology theory into their study.

MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
68T40 Artificial intelligence for robotics

Citations:

Zbl 1471.55003

References:

[1] Adamson, I., Cohomology theory for non-normal subgroups and non-normal fields, Proc. Glasg. Math. Assoc., 2, 2, 66-76 (1954) · Zbl 0057.25401
[2] Arciniega-Nevárez, J.; Cisneros-Molina, J., Comparison of relative group (co)homologies, Bol. Soc. Mat. Mex., 23, 1, 41-74 (2017) · Zbl 1386.18049
[3] Arciniega-Nevárez, J.; Cisneros-Molina, J.; Sánchez-Saldana, L., Relative group homology theories with coefficients and the comparison homomorphism, Quaest. Math., 1-26 (2020)
[4] Berstein, I., On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Camb. Philos. Soc., 79, 129-134 (1976) · Zbl 0315.55011
[5] Berstein, I.; Ganea, T., The category of a map and a cohomology class, Fundam. Math., 50, 265-279 (1962) · Zbl 0192.29302
[6] Blowers, J., The classifying space of a permutation representation, Trans. Am. Math. Soc., 227, 345-355 (1977) · Zbl 0364.55007
[7] Brown, K., Cohomology of Groups, Graduate Texts in Mathematics, vol. 87 (1982), Springer-Verlag · Zbl 0584.20036
[8] Capovilla, P.; Loeh, C.; Moraschini, M., Amenable category and complexity · Zbl 1499.18030
[9] Costa, A.; Farber, M., Motion planning in spaces with small fundamental groups, Commun. Contemp. Math., 12, 1, 107-119 (2010) · Zbl 1215.55001
[10] Dranishnikov, A., On topological complexity of hyperbolic groups, Proc. Am. Math. Soc., 148, 4547-4556 (2020) · Zbl 1447.55002
[11] Dranishnikov, A.; Rudyak, Y., On the Bernstein-Svarc theorem in dimension 2, Math. Proc. Camb. Philos. Soc., 146, 2, 407-413 (2009) · Zbl 1171.55002
[12] Eilenberg, S.; Ganea, T., On the Lusternik-Schnirelmann category of abstract groups, Ann. Math., 65, 517-518 (1957) · Zbl 0079.25401
[13] Eilenberg, S.; Moore, J., Foundations of Relative Homological Algebra, Memoirs of the American Mathematical Society, vol. 55 (1965), American Mathematical Society · Zbl 0129.01101
[14] Farber, M., Topological complexity of motion planning, Discrete Comput. Geom., 29, 2, 211-221 (2003) · Zbl 1038.68130
[15] Farber, M., Topology of robot motion planning, (Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217 (2006), Springer), 185-230 · Zbl 1089.68131
[16] Farber, M., Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, vol. 8 (2008), European Mathematical Society · Zbl 1148.55011
[17] Farber, M.; Grant, M.; Lupton, G.; Oprea, J., Bredon cohomology and robot motion planning, Algebraic Geom. Topol., 19, 4, 2023-2059 (2019) · Zbl 1471.55003
[18] Farber, M.; Mescher, S., On the topological complexity of aspherical spaces, J. Topol. Anal., 12, 2, 293-319 (2020) · Zbl 1455.55003
[19] Fet, A., Generalization of a theorem of Lusternik-Schnirelmann on covering of spheres and some theorems connected with it, Dokl. Akad. Nauk SSSR, 95, 1149-1151 (1954) · Zbl 0055.41604
[20] Hochschild, G., Relative homological algebra, Trans. Am. Math. Soc., 82, 246-269 (1956) · Zbl 0070.26903
[21] Huebschmann, J., Cohomology of nilpotent groups of class 2, J. Algebra, 126, 2, 400-450 (1989) · Zbl 0696.55025
[22] Husemoller, D., Fibre Bundles, Graduate Texts in Mathematics, vol. 20 (1994), Springer-Verlag
[23] Li, K., On the topological complexity of toral relatively hyperbolic groups, preprint · Zbl 1515.20242
[24] Lück, W., Survey on classifying spaces for families of subgroups, (Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., vol. 248 (2005), Birkhäuser), 269-322 · Zbl 1117.55013
[25] May, J., Equivariant Homotopy and Cohomology Theory, CBMS Regional Conference Series in Mathematics, vol. 91 (1996), American Mathematical Society · Zbl 0890.55001
[26] Pamuk, S.; Yalçin, E., Relative group cohomology and the orbit category, Commun. Algebra, 42, 3220-3243 (2014) · Zbl 1322.20041
[27] Schwarz, A., The genus of a fiber space, Am. Math. Soc. Transl., 55, 49-140 (1966) · Zbl 0178.26202
[28] tom Dieck, T., Transformation Groups, Studies in Mathematics, vol. 8 (1987), de Gruyter · Zbl 0611.57002
[29] Weibel, C., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (1994), Cambridge University Press · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.