×

Numerical solutions of variable order time fractional \((1+1)\)- and \((1+2)\)-dimensional advection dispersion and diffusion models. (English) Zbl 1429.65238

Summary: A numerical scheme based on Haar wavelets coupled with finite differences is suggested to study variable order time fractional partial differential equations (TFPDEs). The technique is tested on \((1 + 1)\)-dimensional advection dispersion and \((1 + 2)\)-dimensional advection diffusion equations. In the proposed scheme, time fractional derivative is firstly approximated by quadrature formula, and then finite differences are combined with one and two dimensional Haar wavelets. With the help of suggested method the TFPDEs convert to a system of algebraic equations which is easily solvable. Also convergence of the proposed scheme has been discussed which is an important part of the present work. For validation, the obtained results are matched with earlier work and exact solutions. Computations illustrate that the proposed scheme has better outcomes.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65T60 Numerical methods for wavelets
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of the fractional differential equations, Math. Stud., 204 (2006) · Zbl 1092.45003
[3] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 0998.26002
[4] Oldham, K. B., Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41, 9-12 (2010) · Zbl 1177.78041
[5] Hesameddini, E.; Rahimi, A.; Asadollahifard, E., On the convergence of a new reliable algorithm for solving multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 34, 154-164 (2016) · Zbl 1510.65178
[6] Chen, M.; Jia, L.; Chen, X.; Yin, X., Flutter analysis of a flag of fractional viscoelastic material, J. Sound Vib., 333, 7183-7197 (2014)
[7] Calderon, A.; Vinagre, B., Fractional order control strategies for power electronic buck converters, Signal Process., 86, 2803-2819 (2006) · Zbl 1172.94377
[8] Li, Y. W.T.; Yang, Y., Synchronization of fractional-order hyperchaotic systems via fractional-order controllers, Discr. Dyn. Nat. Soc., 63, 1-14 (2014) · Zbl 1419.34164
[9] Shyu, J. J.; Pei, S. C.; Chan, C. H., An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89, 320-327 (2009) · Zbl 1151.94410
[10] Coimbra, C., Mechanics with variable-order differential operators, Ann. Phys, 12, 11-12, 692-703 (2003) · Zbl 1103.26301
[11] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Fractional diffusion in inhomogeneous media, J. Phys. A Math. Gen., 38, 679-684 (2005) · Zbl 1082.76097
[12] Santamaria, F.; Wils, S.; Schutter, E. D.; Augustine, G. J., Anomalous diffusion in purkinjecell dendrites caused by spines, Neuron, 52, 635-648 (2006)
[13] Sun, H. G.; Chen, Y. Q.; Chen, W., Random-order fractional differential equation models, Signal Process., 91, 525-530 (2011) · Zbl 1203.94056
[14] Sun, H. G.; Chen, W.; Wei, H.; Chen, Y. Q., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193, 185-192 (2011)
[15] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comp, 212, 435-445 (2009) · Zbl 1171.65101
[16] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[17] Chen, C.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32, 4, 1740-1760 (2010) · Zbl 1217.26011
[18] Tayebia, A.; Shekaria, Y.; Heydarib, M. H., A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) · Zbl 1380.65185
[19] Wang, L.; Ma, Y.; Meng, Z., Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227, 66-76 (2014) · Zbl 1364.65213
[20] Lepik, U., Solving PDEs with the aid of two-dimensional haar wavelets, Comput. Math. Appl., 61, 1873-1879 (2011) · Zbl 1219.65169
[21] Oruc, O.; Bulut, F.; Esen, A., A Haar wavelet-finite difference hybrid method for the numerical solution of the modified burgers equation, J. Math. Chem., 53, 1592-1607 (2015) · Zbl 1331.65123
[22] Majak, M.; Shvartsman, B. S.; Kirs, M.; Herranen, H., Convergence theorem for the haar wavelet based discretization method, Comput. Struct., 126, 227-232 (2015)
[23] Arbabi, S.; Nazari, A.; Darvishi, M. T., A two-dimensional haar wavelets method for solving systems of PDEs, App. Math. Comput., 292, 33-46 (2017) · Zbl 1410.65391
[24] Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 10861-10870 (2012) · Zbl 1280.65089
[25] Chen, Y.; Liu, L.; Li, B.; Sun, Y., Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238, 329-341 (2014) · Zbl 1334.65167
[26] Haq, S.; Ghafoor, A., An efficient numerical algorithm for multi-dimensional time dependent partial differential equations, Comput. Math. Appl., 75, 2723-2734 (2018) · Zbl 1415.65234
[27] Zhang, H.; Liu, F.; Phanikumar, M. S.; Meerschaert, M. M., A novel numerical method for the time variable fractional order mobile immobile advection dispersion model, Comput. Math. Appl., 66, 693-701 (2013) · Zbl 1350.65092
[28] Risken, H., The Fokker-Planck Equation (1988), Springer: Springer Berlin
[29] Runca, E.; Melli, P.; Sardei, F., An analysis of a finite-difference and a Galerkin technique applied to the simulation of advection and diffusion of air pollutants from a line source, J. Comput. Phys., 59, 152-166 (1985) · Zbl 0579.65104
[30] Langlands, T. A.M.; Henry, B. I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[31] Li, D.; Zhang, J.; Zhang, Z., Unconditionally optimal error estimate of linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations, J. Sci. Comput., 76, 848-866 (2018) · Zbl 1397.65173
[32] Li, D.; Liao, H.; Wang, J.; Zhang, J., Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys., 24, 86-103 (2018) · Zbl 1488.65431
[33] Jin, B.; Lazarov, R.; Zhou, Z., Error estimates for a semi discrete finite element method for fractional order parabolic equations, SIAM. J. Numer. Anal., 51, 445-466 (2013) · Zbl 1268.65126
[34] Zhang, X.; Huang, P.; Feng, X.; Wei, L., Finite element method for two-dimensional time-fractional tricomi-type equations, Numr. Meth. Part. Diff. Eqs., 29, 1081-1096 (2013) · Zbl 1276.65060
[35] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56, 1138-1145 (2008) · Zbl 1155.65372
[36] Dehghan, M.; Safarpoor, M., The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations, Math. Meth. Appl. Sci., 39, 3979-3995 (2016) · Zbl 1347.65182
[37] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Part. Diff. Eq., 26, 448-479 (2010) · Zbl 1185.65187
[38] Saadatmandi, A.; Dehghan, M.; Azizi, M. R., The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients, Commun. Nonlinear Sci Numer Simul., 17, 4125-4136 (2012) · Zbl 1250.65121
[39] Dehghan, M.; Abbaszadeh, M., Element free Galerkin approach based on the reproducing kernel particle method for solving 2d fractional tricomi-type equation with robin boundary condition, Comput. Math. Appl., 73, 1270-1285 (2016) · Zbl 1412.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.