×

Shakedown optimal design of reinforced concrete structures by evolution strategies. (English) Zbl 1112.74460

Summary: Approaches the shakedown optimal design of reinforced concrete (RC) structures, subjected to variable and repeated external quasi-static actions which may generate the well-known shakedown or adaptation phenomenon, when constraints are imposed on deflection and/or deformation parameters, in order to simulate the limited flexural ductility of the material, in the presence of combined axial stress and bending. Within this context, the classical shakedown optimal design problem is revisited, using a weak upper bound theorem on the effective plastic deformations. For this problem a new computational algorithm, termed evolution strategy, is herein presented. This algorithm, derived from analogy with the biological evolution, is based on random operators which allow one to treat the areas of steel reinforcements at each RC cross-section of the structure as design variables of discrete type, and to use refined non-linear approximations of the effective bending moment – axial force M-N interaction diagrams of each RC cross-section. The results obtained from case studies available in the literature show the advantages of the method and its effectiveness.

MSC:

74P10 Optimization of other properties in solid mechanics
Full Text: DOI

References:

[1] Bleich, H. (1932), ”Über die Bemessung statisch unbestimmter Stahltragwerke unter Berucksichtigung des elastichen-plastischen Verhaltens der Baustoffes”,Bauingenieur, Vol. 19/20, p. 261. · Zbl 0004.17005
[2] Cohn, M.Z. (1972), ”Equilibrium (serviceability) methods of limit design for concrete flames”,ICE Proc. Paper No. 7514S, pp. 263-75.
[3] Cohn, M.Z. and Ghosh, S.K. (1972), ”The flexural ductility of reinforced concrete sections”,I.A.B.S.E. Pubbl., Vol. 32 No. 11, pp. 53-81.
[4] Darwin, C.R. (1859),The Origin of Species, John Murray, London.
[5] Drucker, D.C. (1958), ”Plasticity”, in Goodier, J.N. and Hoff, N.J. (Eds),1st Symp. on Naval Struct. Mech., Stanford University, California, pp. 407-55.
[6] Ghosh, S.K. and Cohn, M.Z. (1974), ”Computer analysis of reinforced concrete sections under combined bending and compression”,I.A.B.S.E. Pubbl., Vol. 34 No. 1, pp. 71-93.
[7] DOI: 10.1080/03052159408941350 · doi:10.1080/03052159408941350
[8] Melan, E. (1936), ”Theorie statisch unbestimmter Systeme”,Preliminary Publ., I ABSE, 2, Congress, Berlin. · JFM 62.1547.01
[9] Munro, J.et al.(1972), ”Optimal design of reinforced concrete flames”,The Struct. Eng., Vol. 50 No. 7, pp. 259-64.
[10] Munro, J.et al.(1973), ”Linear program for the optimal design of reinforced concrete frames”,IABSE Publ, Vol. 33 No. 1, pp. 119-40.
[11] DOI: 10.1007/BF02128538 · Zbl 0413.73041 · doi:10.1007/BF02128538
[12] Polizzotto, C. (1982), ”A unified treatment of shakedown theory and related bounding techniques”,SM Archives, Vol. 7 No. 1, pp. 19-75. · Zbl 0487.73035
[13] DOI: 10.1080/03052158708941055 · doi:10.1080/03052158708941055
[14] DOI: 10.1115/1.3422898 · doi:10.1115/1.3422898
[15] DOI: 10.1115/1.3607621 · Zbl 0152.43305 · doi:10.1115/1.3607621
[16] Rechenberg, I. (1973),Evolutionsstrategie: Optmnierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog, Germany.
[17] Rizzo, S. (1982), ”Minimum reinforcement volume of concrete structures accounting for limited ductility”,AIMETA Conf. Proc.-Sect.V, Genova, Italy, pp. 278-90
[18] DOI: 10.1007/BF01560463 · Zbl 0546.73029 · doi:10.1007/BF01560463
[19] Silveira, J.L.L. and Zouain, N. (1997), ”On extremum principles and algorithms for shakedown analysis”,Eur. J. Mech., A/Solids, Vol. 16 No. 5, pp. 757-78. · Zbl 0882.73025
[20] Thierauf, G. (1996), ”Direct search, stochastic search and Darwinian methods in structural optimization and interactions with parallel computing”, in Topping, B.H.V. (Ed.),Advances in Computational Structures Technology, Civil-Comp Ltd, Edinburgh, Scotland. · doi:10.4203/ccp.38.2.2
[21] Zavelani Rossi, A. (1973), ”Optimal shakedown design of RC beams”,Rend. Ist. Lombardo, Vol. 105, pp. 145-64.
[22] DOI: 10.1016/S0997-7538(99)00125-4 · Zbl 0976.74061 · doi:10.1016/S0997-7538(99)00125-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.