×

Nonlinear quasistatic problems of gradient type in inelastic deformations theory. (English) Zbl 1178.35360

Author’s abstract: We study nonlinear quasistatic problems from inelastic deformations theory. Only strictly monotone, gradient-type constitutive equations are considered. We prove existence for both coercive and non-coercive models, using energy estimates and Young measures. For non-coercive models we use the \(L^{2}\) self-controlling property.

MSC:

35Q70 PDEs in connection with mechanics of particles and systems of particles
74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] Alber, H.-D., Materials with Memory (1998), Springer: Springer Berlin, Heidelberg, New York · Zbl 0977.35001
[2] Aubin, J.-P.; Cellina, A., Differential Inclusions (1984), Springer: Springer Berlin · Zbl 0538.34007
[3] Ball, J., A version of the fundamental theorem for Young measures, (Rascale, M. S.M.; Serre, D., PDEs and Continuum Models of Phase Transitions. PDEs and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 344 (1988)), 207-215 · Zbl 0991.49500
[4] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (1973), North-Holland: North-Holland Amsterdam, London · Zbl 0252.47055
[5] Chełmiński, K., Coercive approximation of viscoplasticity and plasticity, Asymptot. Anal., 26, 105-133 (2001) · Zbl 1013.74010
[6] Chełmiński, K., On quasistatic inelastic models of gradient type with convex composite constitutive equations, Cent. Eur. J. Math., 4, 670-689 (2003) · Zbl 1038.35135
[7] Chełmiński, K.; Gwiazda, P., Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type, Contin. Mech. Thermodyn., 12, 217-234 (2000) · Zbl 1003.74033
[8] Chełmiński, K.; Gwiazda, P., Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30, 1357-1374 (2007) · Zbl 1121.35135
[9] Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 74 (1990), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0698.35004
[10] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0902.35002
[11] Hömberg, D., A mathematical model for induction hardening including mechanical effects, Nonlinear Anal. Real World Appl., 5, 55-90 (2004) · Zbl 1330.74044
[12] Kamiński, P., Nonlinear problems in inelastic deformation theory, ZAMM Z. Angew. Math. Mech., 88, 4, 267-282 (2008) · Zbl 1135.74020
[13] Melan, E., Zur Plastizität des räumlichen Kontinuums, Ingenieur-Archiv, 9, 116-126 (1938) · JFM 64.0840.01
[14] Prager, W., Recent developments in the mathematical theory of elasticity, J. Appl. Phys., 20, 235-241 (1949) · Zbl 0034.26605
[15] Roubíček, T., Relaxation and Optimization Theory in Variational Calculus (1997), Walter de Gruyter & co.: Walter de Gruyter & co. Berlin · Zbl 0880.49002
[16] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam, New York, Oxford · Zbl 0568.35002
[17] Valent, T., Boundary Value Problems of Finite Elasticity, Springer Tracts in Natural Philosophy, vol. 31 (1988) · Zbl 0648.73019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.