×

Stable semigroups on homogeneous trees and hyperbolic spaces. (English) Zbl 1276.60082

Summary: We prove the kernel estimates for subordinated semigroups on homogeneous trees. We study the long-time propagation problem. We exploit this to prove exit-time estimates for large balls in the abstract setting of metric measure spaces. Finally, we give estimates for the Poisson kernel of a ball.

MSC:

60J35 Transition functions, generators and resolvents
47D03 Groups and semigroups of linear operators
14M17 Homogeneous spaces and generalizations

References:

[1] J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces , Geom. Funct. Anal. 9 (1999), 1035-1091. · Zbl 0942.43005 · doi:10.1007/s000390050107
[2] J.-P. Anker and A. G. Setti, Asymptotic finite propagation speed for heat diffusion on certain Riemannian manifolds , J. Funct. Anal. 103 (1992), 50-61. · Zbl 0767.58038 · doi:10.1016/0022-1236(92)90133-4
[3] M. Babillot, A probabilistic approach to heat diffusion on symmetric spaces , J. Theoret. Probab. 7 (1994), 599-607. · Zbl 0824.60084 · doi:10.1007/BF02213570
[4] M. T. Barlow, Diffusion on fractals , Lectures on probability theory and statistics, Ecole d’Ete de Probabilites de Saint-Flour XXV–1995, Lecture Notes in Mathematics, vol. 1690, Springer, New York, 1999, pp. 1-121. · doi:10.1007/BFb0092537
[5] J. Bertoin, Lévy processes , Cambridge University Press, Cambridge, 1996. · Zbl 0861.60003
[6] K. Bogdan, A. Stós and P. Sztonyk, Harnack inequality for stable processes on \(d\)-sets , Studia Math. 158 (2003), 163-198. · Zbl 1031.60070 · doi:10.4064/sm158-2-5
[7] K. L. Chung and Z. Zhao, From Brownian motion to Schrödinger’s equation , Springer-Verlag, New York, 1995. · Zbl 0819.60068 · doi:10.1007/978-3-642-57856-4
[8] M. Cowling, S. Meda and A. G. Setti, Estimates for functions of the Laplace operator on homogeneous trees , Trans. Amer. Math. Soc. 352 (2000), 4271-4293. · Zbl 0949.43008 · doi:10.1090/S0002-9947-00-02460-0
[9] E. B. Davies, Heat kernels and spectral theory , Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[10] A. Figà Talamanca and C. Nebia, Harmonic analysis and representation theory for groups acting on homogeneous trees , London Math. Soc. Lecture Note Ser., vol. 162, Cambridge University Press, Cambridge, 1991. · Zbl 1154.22301 · doi:10.1017/CBO9780511662324
[11] A. Figà Talamanca and M. Picardello, Harmonic analysis on free groups , Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, New York, 1983. · Zbl 0536.43001
[12] R. K. Getoor, Infinitely divisible probabilities on the hyperbolic plane , Pacific J. Math. 11 (1961), 1287-1308. · Zbl 0124.34502 · doi:10.2140/pjm.1961.11.1287
[13] P. Graczyk and T. Jakubowski, Exit times and Poisson kernels of the Ornstein-Uhlenbeck diffusion , Stoch. Models 24 (2008), 314-337. · Zbl 1148.60058 · doi:10.1080/15326340802009337
[14] P. Graczyk and A. Stós, Transition density estimates for stable processes on symmetric spaces , Pacific J. Math. 217 (2004), 87-100. · Zbl 1067.60017 · doi:10.2140/pjm.2004.217.87
[15] I. S. Gradstein and I. M. Ryzhik, Table of integrals, series and products , 6th ed., Academic Press, London, 2000.
[16] A. Grigoryan, Heat kernel and function theory on metric measure spaces , Heat kernels and analysis on manifolds, graphs, and metric spaces, Contemp. Math., vol. 338, American Mathematical Society, Providence, 2003, pp. 143-172. · doi:10.1090/conm/338/06073
[17] J. Hawkes, A lower Lipschitz condition for the stable subordinator , Z. Wahrsch. verw. Gebiete 17 (1971), 23-32. · Zbl 0193.45002 · doi:10.1007/BF00538471
[18] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes , J. Math. Kyoto Univ. 2 (1962), 79-95. · Zbl 0118.13401
[19] T. Jakubowski, The estimates of the mean first exit time from a ball for the \(\alpha\)-stable Ornstein-Uhlenbeck processes , Stochastic Process. Appl. 117 (2007), no. 10, 1540-1560. · Zbl 1132.60044 · doi:10.1016/j.spa.2007.02.007
[20] G. Medolla and A. G. Setti, Long time heat diffusion on homogeneous trees , Proc. Amer. Math. Soc. 128 (1999), 1733-1742. · Zbl 0943.43004 · doi:10.1090/S0002-9939-99-05536-7
[21] F. Olver, Asymptotics and special functions , Academic Press, New York, 1974. · Zbl 0303.41035
[22] K. Pietruska-Pałuba, On function spaces related to fractional diffusions on \(d\)-sets , Stochastics Stochastics Rep. 70 (2000), 153-164. · Zbl 0967.60079 · doi:10.1080/17442500008834250
[23] W. Woess, Heat diffusion on homogeneous trees (note on a paper by Medolla and Setti) , Boll. Unione Mat. Ital. (8) 4-B (2001), 703-709. · Zbl 1177.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.