×

The shifted wave equation on Damek-Ricci spaces and on homogeneous trees. (English) Zbl 1275.43010

Picardello, Massimo A. (ed.), Trends in harmonic analysis. Selected papers of the conference on harmonic analysis, Rome, Italy, May 30–June 4, 2011. Berlin: Springer (ISBN 978-88-470-2852-4/hbk; 978-88-470-2853-1/ebook). Springer INdAM Series 3, 1-25 (2013).
Let \(S=N\rtimes A\) be a Damek-Ricci space, where \(N\) is a Heisenberg type group and \(A\cong \mathbb R\). Consider the following shifted wave equation \[ \partial_{tt} u(x,t)=(\Delta_x+Q^2/4)u(x,t),\quad u(x,0)=f(x),\quad\partial_t |_{t=0} u(x,t)=g(x) \] on \(S\). Here \(Q\) denotes the homogeneous dimension of \(N. \) To solve explicitly the wave equation, the authors: (i) prove explicit expressions for the dual Abel transform and its inverse, and (ii) extend Ásgeirsson’s mean value theorem to Damek-Ricci spaces. As an application, they investigate the validity of Huygen’s principle for the shifted wave equation with initial data \((f,g)\) supported in a ball. A similar analysis is carried out in the discrete setting of homogeneous trees. The paper is well written and contains detailed proofs.
For the entire collection see [Zbl 1254.00031].

MSC:

43A85 Harmonic analysis on homogeneous spaces
35L05 Wave equation
20F67 Hyperbolic groups and nonpositively curved groups
22E30 Analysis on real and complex Lie groups
22E35 Analysis on \(p\)-adic Lie groups

References:

[1] Anker, J.-P.; Damek, E.; Yacoub, C., Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 23, 643-679 (1996) · Zbl 0881.22008
[2] Anker, J.-P.; Pierfelice, V.; Vallarino, M., The wave equation on hyperbolic spaces, J. Differ. Equ., 252, 5613-5661 (2012) · Zbl 1252.35114 · doi:10.1016/j.jde.2012.01.031
[3] Anker, J.-P., Pierfelice, V., Vallarino, M.: The wave equation on Damek-Ricci spaces. arXiv:1012.0689 · Zbl 1329.35076
[4] Astengo, F.; Di Blasio, B., Huygens’ principle and a Paley-Wiener type theorem on Damek-Ricci spaces, Ann. Math. Blaise Pascal, 17, 327-340 (2010) · Zbl 1207.43006 · doi:10.5802/ambp.286
[5] Ayadi, F., Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian, J. Lie Theory, 18, 747-755 (2008) · Zbl 1171.35421
[6] Ben Said, S., Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators, Math. Res. Lett., 13, 43-58 (2006) · Zbl 1088.39018
[7] Branson, T.; Ólafsson, G.; Schlichtkrull, H., Huygens’ principle in Riemannian symmetric spaces, Math. Ann., 301, 445-462 (1995) · Zbl 0822.43002 · doi:10.1007/BF01446638
[8] Brooks, S.; Lindenstrauss, E., Graph eigenfunctions and quantum unique ergodicity, C. R. Acad. Sci. Paris Sér. I (Math.), 348, 829-834 (2010) · Zbl 1214.37006 · doi:10.1016/j.crma.2010.07.003
[9] Brooks, S., Lindenstrauss, E.: Non-localization of eigenfunctions on large regular graphs. Isr. J. Math. 1-14 (2012). doi:doi:10.1007/s11856-012-0096-y · Zbl 1317.05110
[10] Bunke, U.; Olbrich, M., The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function), Ann. Glob. Anal. Geom., 12, 357-405 (1994) · Zbl 0832.53041 · doi:10.1007/BF02108307
[11] Cohen, J. M.; Pagliacci, M., Explicit solutions for the wave equation on homogeneous trees, Adv. Appl. Math., 15, 390-403 (1994) · Zbl 0835.05068 · doi:10.1006/aama.1994.1016
[12] Cowling, M. G.; Meda, S.; Setti, A. G., An overview of harmonic analysis on the group of isometries of a homogeneous tree, Expo. Math., 16, 385-423 (1998) · Zbl 0915.43007
[13] Damek, E.; Ricci, F., A class of nonsymmetric harmonic Riemannian spaces, Bull. Am. Math. Soc., 27, 139-142 (1992) · Zbl 0755.53032 · doi:10.1090/S0273-0979-1992-00293-8
[14] El Kamel, J.; Yacoub, C., Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal, 12, 147-160 (2005) · Zbl 1088.35036 · doi:10.5802/ambp.199
[15] Figà-Talamanca, A.; Nebbia, C., Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees (1991), Cambridge: Cambridge University Press, Cambridge · Zbl 1154.22301 · doi:10.1017/CBO9780511662324
[16] Figà-Talamanca, A.; Picardello, M. A., Harmonic Analysis on Free Groups (1983), New York: Dekker, New York · Zbl 0536.43001
[17] Helgason, S., Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions) (1984), Orlando: Academic Press, Orlando · Zbl 0543.58001
[18] Helgason, S., Geometric Analysis on Symmetric Spaces (1994), Providence: Am. Math. Soc., Providence · Zbl 0809.53057
[19] Intissar, A.; Vall Ould Moustapha, M., Solution explicite de l’équation des ondes dans un espace symétrique de type non compact de rang 1, Sémin. Théor. Spectr. Géom., 12, 25-28 (1994) · Zbl 0912.58038
[20] Intissar, A.; Val Ould Moustapha, M., Solution explicite de l’équation des ondes dans l’espace symétrique de type non compact de rang 1, C. R. Acad. Sci. Paris Sér. I (Math.), 321, 77-80 (1995) · Zbl 0836.35084
[21] Ionescu, A. D., Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal., 174, 274-300 (2000) · Zbl 0962.43004 · doi:10.1006/jfan.2000.3572
[22] Koornwinder, T. H.; Askey, R. A.; Koornwinder, T. H.; Schempp, W., Jacobi functions and analysis on noncompact semisimple Lie groups, Special Functions (Group Theoretical Aspects and Applications), 1-85 (1984), Dordrecht: Reidel, Dordrecht · Zbl 0584.43010 · doi:10.1007/978-94-010-9787-1_1
[23] Medolla, G.; Setti, A. G., The wave equation on homogeneous trees, Ann. Mat. Pura Appl. (4), 176, 1-27 (1999) · Zbl 0955.35048 · doi:10.1007/BF02505986
[24] Lax, P. D.; Phillips, R. S., The asymptotic distribution of lattice points in euclidean and non-euclidean spaces, J. Funct. Anal., 46, 280-350 (1982) · Zbl 0497.30036 · doi:10.1016/0022-1236(82)90050-7
[25] Noguchi, M., The solution of the shifted wave equation on Damek-Ricci space, Interdiscip. Inf. Sci., 8, 101-113 (2002) · Zbl 1018.43008
[26] Rouvière, F.; Faraut, J.; Rouvière, F.; Vergne, M., Espaces de Damek-Ricci (géométrie et analyse), Analyse sur les Groupes de Lie et Théorie des Représentations, 45-100 (2003), Paris: Soc. Math. France, Paris · Zbl 1045.53034
[27] Strichartz, R. S., Asymptotic behavior of waves, J. Funct. Anal., 40, 341-357 (1981) · Zbl 0484.35070 · doi:10.1016/0022-1236(81)90053-7
[28] Tataru, D., Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Am. Math. Soc., 353, 795-807 (2001) · Zbl 0956.35088 · doi:10.1090/S0002-9947-00-02750-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.