×

Robust multicriteria risk-averse stochastic programming models. (English) Zbl 1380.90203

Summary: In this paper, we study risk-averse models for multicriteria optimization problems under uncertainty. We use a weighted sum-based scalarization and take a robust approach by considering a set of scalarization vectors to address the ambiguity and inconsistency in the relative weights of each criterion. We model the risk aversion of the decision makers via the concept of multivariate conditional value-at-risk (CVaR). First, we introduce a model that optimizes the worst-case multivariate CVaR and show that its optimal solution lies on a particular type of stochastic efficient frontier. To solve this model, we develop a finitely convergent delayed cut generation algorithm for finite probability spaces. We also show that the proposed model can be reformulated as a compact linear program under certain assumptions. In addition, for the cut generation problem, which is in general a mixed-integer program, we give a stronger formulation than the existing ones for the equiprobable case. Next, we observe that similar polyhedral enhancements are also useful for a related class of multivariate CVaR-constrained optimization problems that has attracted attention recently. In our computational study, we use a budget allocation application to benchmark our proposed maximin type risk-averse model against its risk-neutral counterpart and a related multivariate CVaR-constrained model. Finally, we illustrate the effectiveness of the proposed solution methods for both classes of models.

MSC:

90C15 Stochastic programming
90C29 Multi-objective and goal programming

References:

[1] Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203-228. · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[2] Balibek, E., & Köksalan, M. (2010). A multi-objective multi-period stochastic programming model for public debt management. European Journal of Operational Research, 205(1), 205-217. · Zbl 1187.90247 · doi:10.1016/j.ejor.2009.12.001
[3] Ben Abdelaziz, F. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1-16. · Zbl 1242.90142 · doi:10.1016/j.ejor.2011.03.033
[4] Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1995). Distributional efficiency in multiobjective stochastic linear programming. European Journal of Operational Research, 85(2), 399-415. · Zbl 0912.90226 · doi:10.1016/0377-2217(94)00037-D
[5] Ben-Tal, A., Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton, NJ: Princeton University Press. · Zbl 1221.90001 · doi:10.1515/9781400831050
[6] Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464-501. · Zbl 1233.90259 · doi:10.1137/080734510
[7] Borcherding, K., Eppel, T., & von Winterfeldt, D. (1991). Comparison of weighting judgments in multiattribute utility measurement. Management Science, 37(12), 1603-1619. · Zbl 0729.91012 · doi:10.1287/mnsc.37.12.1603
[8] Burgert, C., & Rüschendorf, L. (2006). Consistent risk measures for portfolio vectors. Insurance: Mathematics and Economics, 38(2), 289-297. · Zbl 1138.91490
[9] Dentcheva, D., & Ruszczyński, A. (2006). Portfolio optimization with stochastic dominance constraints. Journal of Banking and Finance, 30(2), 433-451. · doi:10.1016/j.jbankfin.2005.04.024
[10] Dentcheva, D., & Ruszczyński, A. (2009). Optimization with multivariate stochastic dominance constraints. Mathematical Programming, 117(1), 111-127. · Zbl 1221.90069 · doi:10.1007/s10107-007-0165-x
[11] Dentcheva, D.; Wolfhagen, E.; Deodatis, G. (ed.); Ellingwood, B. (ed.); Frangopol, D. (ed.), Optimization with multivariate dominance constraints (2013), Boca Raton
[12] Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer. · Zbl 1132.90001
[13] Ehrgott, M., Ide, J., & Schöbel, A. (2014). Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 239(1), 17-31. · Zbl 1339.90296 · doi:10.1016/j.ejor.2014.03.013
[14] Ekeland, I., & Schachermayer, W. (2011). Law invariant risk measures on \[L^\infty (\mathbb{R}^d)\] L∞(Rd). Statistics and Risk Modeling with Applications in Finance and Insurance, 28(3), 195-225. · Zbl 1232.91345
[15] Gupte, A., Ahmed, S., Dey, S. S., & Cheon, M. S. (2017). Relaxations and discretizations for the pooling problem. Journal of Global Optimization, 67(3), 631-669. · Zbl 1392.90117 · doi:10.1007/s10898-016-0434-4
[16] Gutjahr, W. J., & Pichler, A. (2016). Stochastic multi-objective optimization: A survey on non-scalarizing methods. Annals of Operations Research, 236(2), 475-499. · Zbl 1331.90045 · doi:10.1007/s10479-013-1369-5
[17] Hamel, A. H., Rudloff, B., & Yankova, M. (2013). Set-valued average value at risk and its computation. Mathematics and Financial Economics, 7(2), 229-246. · Zbl 1269.91071 · doi:10.1007/s11579-013-0094-9
[18] Homem-de-Mello, T., & Mehrotra, S. (2009). A cutting surface method for uncertain linear programs with linear stochastic dominance constraints. SIAM Journal on Optimization, 20(3), 1250-1273. · Zbl 1198.90291 · doi:10.1137/08074009X
[19] Hu, J., Homem-de-Mello, T., & Mehrotra, S. (2011). Risk-adjusted budget allocation models with application in homeland security. IIE Transactions, 43(12), 819-839. · doi:10.1080/0740817X.2011.578610
[20] Hu, J., Homem-de Mello, T., & Mehrotra, S. (2012). Sample average approximation of stochastic dominance constrained programs. Mathematical Programming, 133(1-2), 171-201. · Zbl 1259.90083 · doi:10.1007/s10107-010-0428-9
[21] Hu, J., & Mehrotra, S. (2012). Robust and stochastically weighted multiobjective optimization models and reformulations. Operations Research, 60(4), 936-953. · Zbl 1342.90074 · doi:10.1287/opre.1120.1071
[22] Jouini, E., Meddeb, M., & Touzi, N. (2004). Vector-valued coherent risk measures. Finance and Stochastics, 8(4), 531-552. · Zbl 1063.91048 · doi:10.1007/s00780-004-0127-6
[23] Köksalan, M., & Şakar, C. T. (2016). An interactive approach to stochastic programming-based portfolio optimization. Annals of Operations Research, 245(1), 47-66. · Zbl 1349.91246 · doi:10.1007/s10479-014-1719-y
[24] Küçükyavuz, S., & Noyan, N. (2016). Cut generation for optimization problems with multivariate risk constraints. Mathematical Programming, 159(1), 165-199. · Zbl 1346.90642 · doi:10.1007/s10107-015-0953-7
[25] Lehmann, E. (1955). Ordered families of distributions. Annals of Mathematical Statistics, 26(3), 399-419. · Zbl 0065.11906 · doi:10.1214/aoms/1177728487
[26] Levy, H. (1992). Stochastic dominance and expected utility: Survey and analysis. Management Science, 38(4), 555-593. · Zbl 0764.90004 · doi:10.1287/mnsc.38.4.555
[27] Mann, H., & Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1), 50-60. · Zbl 0041.26103 · doi:10.1214/aoms/1177730491
[28] McCormick, G. (1976). Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Mathematical Programming, 10(1), 147-175. · Zbl 0349.90100 · doi:10.1007/BF01580665
[29] Müller, A., & Stoyan, D. (2002). Comparison methods for stochastic models and risks. Chichester: Wiley. · Zbl 0999.60002
[30] Noyan, N. (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Computers and Operations Research, 39(3), 541-559. · Zbl 1251.90251 · doi:10.1016/j.cor.2011.03.017
[31] Noyan, N., Balcik, B., & Atakan, S. (2016). A stochastic optimization model for designing last mile relief networks. Transportation Science, 50(3), 1092-1113. · doi:10.1287/trsc.2015.0621
[32] Noyan, N., & Rudolf, G. (2013). Optimization with multivariate conditional value-at-risk-constraints. Operations Research, 61(4), 990-1013. · Zbl 1291.91124 · doi:10.1287/opre.2013.1186
[33] Ogryczak, W. (2010). On robust solutions to multi-objective linear programs. In T. Trzaskalik & T. Wachowicz (Eds.), Multiple Criteria Decision Making ’09 (pp. 197-212). · Zbl 1358.91116
[34] Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean-semideviation models. Mathematical Programming, 89(2), 217-232. · Zbl 1014.91021 · doi:10.1007/PL00011396
[35] Pflug, G. C., & Römisch, W. (2007). Modelling, managing and measuring risk. Singapore: World Scientific Publishing. · Zbl 1153.91023 · doi:10.1142/6478
[36] Rockafellar, R., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. · doi:10.21314/JOR.2000.038
[37] Rüschendorf, L., Risk measures for portfolio vectors, 167-188 (2013), Berlin
[38] Saaty, T. (2000). Decision making for leaders; the analytical hierarchy process for decisions in a complex world. Pittsburgh: RWS Publications.
[39] Schoemaker, P. J. H., & Waid, C. C. (1982). An experimental comparison of different approaches to determining weights in additive utility models. Management Science, 28(2), 182-196. · doi:10.1287/mnsc.28.2.182
[40] Shaked, M., & Shanthikumar, J. G. (1994). Stochastic orders and their applications. Boston: Associated Press. · Zbl 0806.62009
[41] Sherali, H. D., & Adams, W. P. (1994). A hierarchy of relaxations and convex hull representations for mixed-integer zero-one programming problems. Discrete Applied Mathematics, 52(1), 83-106. · Zbl 0819.90064 · doi:10.1016/0166-218X(92)00190-W
[42] Sherali, H. D., Adams, W. P., & Driscoll, P. J. (1998). Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Operations Research, 46(3), 396-405. · Zbl 0979.90090 · doi:10.1287/opre.46.3.396
[43] Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley. · Zbl 0663.90085
[44] von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research. Cambridge: Cambridge University Press.
[45] Willis, H. H., Morral, A. R., Kelly, T. K., & Medby, J. J. (2005). Estimating terrorism risk. Technical report, The RAND Corporation, Santa Monica, CA. · Zbl 1392.90117
[46] Wozabal, D. (2014). Robustifying convex risk measures for linear portfolios: A nonparametric approach. Operations Research, 62(6), 1302-1315. · Zbl 1358.91116 · doi:10.1287/opre.2014.1323
[47] Zhu, S., & Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155-1168. · Zbl 1233.91254 · doi:10.1287/opre.1080.0684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.