×

Entanglement of arbitrary spin modes in expanding universe. (English) Zbl 1333.81037

Summary: Pair particle creation is a well-known effect in the domain of field theory in curved space-time. The behavior of the generated entanglement due to expanding universe is very different for spin-0 and spin-\(1/2\) particles. We study spin-1 particles in Friedmann-Robertson-Walker (FRW) space-time using Duffin-Kemmer-Petiau equation and spin-\(3/2\) particles in FRW space-time using Rarita-Schwinger equation. We find that in expanding universe, the behavior of the generated entanglement for spin-1 particles is the same as the behavior of the generated entanglement for spin-0 particles. Also, we find that spin-\(3/2\) and spin-\(1/2\) particles have the same behavior for the generated entanglement in expanding universe. We conclude that the absolute values of spins do not play any role and the differences in the behavior of the generated entanglement in expanding universe are due to bosonic or fermionic properties.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
83F05 Relativistic cosmology

References:

[1] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865-942 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93-123 (2004) · Zbl 1205.81050 · doi:10.1103/RevModPhys.76.93
[3] Shi, Y.: Entanglement in relativistic quantum field theory. Phys. Rev. D 70, 105001-1-5 (2004) · doi:10.1103/PhysRevD.70.105001
[4] Alsing, P.M., Milburn, G.J.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 91, 180404-1-4 (2003) · doi:10.1103/PhysRevLett.91.180404
[5] León, J., Martín-Martínez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314-1-13 (2009) · doi:10.1103/PhysRevA.80.012314
[6] Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305-1-5 (2009) · doi:10.1103/PhysRevA.80.022305
[7] Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. phys. 79, 555-609 (2007) · Zbl 1205.81042 · doi:10.1103/RevModPhys.79.555
[8] Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320-1-13 (2010)
[9] Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120-1-5 (2010)
[10] Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 1320-1333 (2011) · Zbl 1221.81044 · doi:10.1016/j.aop.2011.02.001
[11] Ebadi, Z., Mirza, B.: Entanglement generation by electric field background. Ann. Phys. 351, 363-381 (2014) · Zbl 1360.81089 · doi:10.1016/j.aop.2014.09.002
[12] Alsing, P.M., McMahon, D., Milburn, G.J.: Teleportation in a non-inertial frame. J. Opt. B 6, S834-S843 (2004) · doi:10.1088/1464-4266/6/8/033
[13] Mehri-Dehnavi, H., Rahimi, R., Mohammadzadeh, H., Ebadi, Z., Mirza, B.: Quantum teleportation with nonclassical correlated states in noninertial frames. Quantum Inf. Process. 14, 1025-1034 (2015) · Zbl 1311.81060 · doi:10.1007/s11128-014-0911-y
[14] Ebadi, Z., Mirza, B.: Entanglement generation due to the background electric field and curvature of spacetime. Int. J. Mod. Phys. A 30, 1550031-1-16 (2015) · Zbl 1310.81037 · doi:10.1142/S0217751X15500311
[15] Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404-1-4 (2005) · doi:10.1103/PhysRevLett.95.120404
[16] Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326-1-15 (2006) · doi:10.1103/PhysRevA.74.032326
[17] Ahmadi, M., Bruschi, D.E., Fuentes, I.: Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028-1-10 (2014) · doi:10.1103/PhysRevD.89.065028
[18] Lee, A.R., Fuentes, I.: Spatially extended Unruh-DeWitt detectors for relativistic quantum information. Phys. Rev. D 89, 085041-1-9 (2014)
[19] Bruschi, D.E., Sabín, C., White, A., Baccetti, V., Oi, D.K.L., Fuentes, I.: Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New J. Phys. 16, 053041-1-15 (2014)
[20] Aspelmeyer, M., Böhm, H.R., Gyatso, T., Jennewein, T., Kaltenbaek, R., Lindenthal, M., Molina-Terriza, G., Poppe, A., Resch, K., Taraba, M., Ursin, R., Walther, P., Zeilinger, A.: Long-distance free-space distribution of quantum entanglement. Science 301, 621-623 (2003) · doi:10.1126/science.1085593
[21] Peng, C.-Z., Yang, T., Bao, X.-H., Zhang, J., Jin, X.-M., Feng, F.-Y., Yang, B., Yang, J., Yin, J., Zhang, Q., Li, N., Tian, B.-L., Pan, J.-W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501-1-4 (2005) · doi:10.1103/PhysRevLett.94.150501
[22] Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over. Nature Phys. 3, 481-486 (2007) · doi:10.1038/nphys629
[23] Ursin, R., Jennewein, T., Kofler, J., Perdigues, J.M., Cacciapuoti, L., de Matos, C.J., Aspelmeyer, M., Valencia, A., Scheidl, T., Fedrizzi, A., Acin, A., Barbieri, C., Bianco, G., Brukner, C., Capmany, J., Cova, S., Giggenbach, D., Leeb, W., Hadfield, R.H., Laflamme, R., Lutkenhaus, N., Milburn, G., Peev, M., Ralph, T., Rarity, J., Renner, R., Samain, E., Solomos, N., Tittel, W., Torres, J.P., Toyoshima, M., Ortigosa-Blanch, A., Pruneri, V., Villoresi, P., Walmsley, I., Weihs, G., Weinfurter, H., Zukowski, M., Zeilinger, A.: Space-quest, experiments with quantum entanglement in space. Europhys. News 40, 26-29 (2009) · doi:10.1051/epn/2009503
[24] Schiller, S., Görlitz, A., Nevsky, A., Alighanbari, S., Vasilyev, S., Abou-Jaoudeh, C., Mura, G., Franzen, T., Sterr, U., Falke, S., Lisdat, C., Rasel, E., Kulosa, A., Bize, S., Lodewyck, J., Tino, G.M., Poli, N., Schioppo, M., Bongs, K., Singh, Y., Gill, P., Barwood, G., Ovchinnikov, Y., Stuhler, J., Kaenders, W., Braxmaier, C., Holzwarth, R., Donati, A., Lecomte, S., Calonico, D., Levi, F.: The space optical clocks project: development of high-performance transportable and breadboard optical clocks and advanced subsystems. arXiv:1206.3765 · Zbl 1360.81089
[25] Poli, N., Oates, C.W., Gill, P., Tino, G.M.: Optical atomic clocks. La rivista del Nuovo Cimento 36, 555-624 (2013)
[26] Ahmadi, M., Bruschi, D.E., Sabín, C., Adesso, G., Fuentes, I.: Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 4996-1-6 (2014) · doi:10.1038/srep04996
[27] Ball, J.L., Fuentes-Schuller, I., Schuller, F.P.: Entanglement in an expanding spacetime. Phys. Lett. A 359, 550-554 (2006) · Zbl 1236.81160 · doi:10.1016/j.physleta.2006.07.028
[28] Fuentes, I., Mann, R.B., Martín-Martínez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D. 82, 045030-1-9 (2010) · doi:10.1103/PhysRevD.82.045030
[29] Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 14, 3-1-159 (2011) · Zbl 1316.83022 · doi:10.12942/lrr-2011-3
[30] Schützhold, R., Unruh, W.G.: Cosmological particle creation in the lab? Lecture notes in physics, vol. 870. Springer, New York (2013) · Zbl 1328.83016
[31] Schwarz, I.P.: Experimenting with quantum fields in curved spacetime in the lab. arXiv:1112.2311
[32] Szpak, N.: curved spacetimes in the lab. arXiv:1410.1567 · Zbl 1140.83363
[33] Kemmer, N.: The particle aspect of meson theory. Proc. Roy. Soc. A 177, 91-116 (1939) · Zbl 0023.19003 · doi:10.1098/rspa.1939.0131
[34] Weinberg, S.: Feynman rules for any spin. Phys. Rev. 133, B1318-B1332 (1964) · Zbl 0134.45904 · doi:10.1103/PhysRev.133.B1318
[35] Shay, S., Good Jr, R.H.: Spin-one particle in an external electromagnetic field. Phys. Rev. 179, 1410-1417 (1969) · doi:10.1103/PhysRev.179.1410
[36] Zamani, F., Mostafazadeh, A.: Quantum mechanics of Proca fields. J. Math. Phys. 50, 052302 (2009) · Zbl 1187.81163 · doi:10.1063/1.3116164
[37] Mirza, B., Narimani, R., Zare, M.: Aharonov-Casher effect for spin-1 particles in a non-commutative space. Eur. Phys. J. C. 48, 641-645 (2006) · Zbl 1191.81125 · doi:10.1140/epjc/s10052-006-0047-z
[38] Swansson, J.A., McKellar, B.H.J.: Relativistic Aharonov-Casher phase in spin 1. J. Phys. A: Math Gen. 34, 1051-1061 (2001) · Zbl 1006.81507 · doi:10.1088/0305-4470/34/5/309
[39] Falek, M., Merad, M.: DKP oscillator in a noncommutative space. Commun. Theor. Phys. 50, 587-592 (2008) · Zbl 1392.81160 · doi:10.1088/0253-6102/50/3/10
[40] Greiner, W.: Relativistic quantum mechanics. Springer, Berlin, Heidelberg (1990) · Zbl 0718.35078 · doi:10.1007/978-3-662-02634-2
[41] Falek, M., Merad, M.: Duffin-Kemmer-Petiau equation in curved space-time. AIP Conf. Proc. 1444, 367-369 (2012) · doi:10.1063/1.4715455
[42] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York (1965) · Zbl 0171.38503
[43] Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982) · Zbl 0476.53017 · doi:10.1017/CBO9780511622632
[44] Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60, 61 (1941) · Zbl 0026.28704 · doi:10.1103/PhysRev.60.61
[45] Velo, G., Zwanziger, D.: Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential. Phys. Rev. 186, 1337-1341 (1969) · doi:10.1103/PhysRev.186.1337
[46] Maroto, A.L., Mazumdar, A.: Production of spin 3/2 particles from vacuum fluctuations. Phys. Rev. Lett. 84, 1655-1658 (2000) · doi:10.1103/PhysRevLett.84.1655
[47] Duncan, A.: Explicit dimensional renormalization of quantum field theory in curved space-time. Phys. Rev. D 17, 964-971 (1978) · doi:10.1103/PhysRevD.17.964
[48] Taronna, M.: Higher-spin interactions: four-point functions and beyond. J. High Energy Phys. 2012(4), 029-1-75 (2012) · Zbl 1348.81384
[49] Fedoruk, S., Lukierski, J.: New spinorial particle model in tensorial space-time and interacting higher spin fields. J. High Energy Phys. 2013(2), 128-1-20 (2013) · Zbl 1342.53069
[50] Florakis, I., Sorokin, D., Tsulaia, M.: Higher spins in hyperspace. J. High Energy Phys. 2014(7), 105-1-24 (2014) · Zbl 1326.81176
[51] Vasiliev, M.A.: More on equations of motion for interacting massless fields of all spins in 3+ 1 dimensions. Phys. Lett. B 285, 225-234 (1992) · doi:10.1016/0370-2693(92)91457-K
[52] Sorokin, D.: Introduction to the classical theory of higher spins. AIP Conf. Proc. 767, 172-202 (2005) · Zbl 1096.81017 · doi:10.1063/1.1923335
[53] Capozziello, S., Luongo, O.: Entangled states in quantum cosmology and the interpretation of \[{\Lambda }\] Λ. Entropy 13(2), 528-541 (2011) · Zbl 1229.83075 · doi:10.3390/e13020528
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.