×

Twisted centrally large subgroups of finite groups. (English) Zbl 1514.20080

Summary: Let \(G\) be a finite group. A subgroup \(Q\) of \(G\) is defined, by Glauberman, to be a centrally large subgroup, or CL-subgroup, of \(G\) if \(| Q | \cdot | Z(Q) | \geqslant | Q^\ast | \cdot | Z( Q^\ast) |\) for every subgroup \(Q^\ast\) of \(G\). A CL-subgroup of \(G\) that is minimal under inclusion is called a minimal CL-subgroup of \(G\). G. Glauberman [J. Algebra 300, No. 2, 480–508 (2006; Zbl 1103.20013)] studied some properties of CL-subgroups, especially minimal CL-subgroups. He showed that if \(Q_1\) and \(Q_2\) are a pair of minimal CL-subgroups, then \[ Q_i = (Q_1 \cap Q_2) Z( Q_i) \text{ for } i = 1, 2 . \tag{\( \ast \)} \] We say that two CL-subgroups \(Q_1\) and \(Q_2\) (not necessarily minimal) are twisted CL-subgroups if they satisfy the above property \(( \ast )\). In this paper, we extend Glauberman’s work to prove some further properties of CL-subgroups, especially twisted CL-subgroups. In addition, we give a negative answer to a conjecture proposed by A. Morresi Zuccari et al. [J. Algebra 502, 262–276 (2018; Zbl 1403.20032)].

MSC:

20D30 Series and lattices of subgroups
20D15 Finite nilpotent groups, \(p\)-groups
20D60 Arithmetic and combinatorial problems involving abstract finite groups
Full Text: DOI

References:

[1] An, L., Groups whose Chermak-Delgado lattice is a quasi-antichain, J. Group Theory, 22, 3, 529-544 (2019) · Zbl 1457.20021
[2] An, L.; Brenna, J.; Qu, H.; Wilcox, E., Chermak-Delgado lattice extension theorems, Commun. Algebra, 43, 5, 2201-2213 (2015) · Zbl 1327.20020
[3] Berkovich, Y., Finite p-groups with few minimal nonabelian subgroups, J. Algebra, 297, 62-100 (2006) · Zbl 1108.20012
[4] Brewster, B.; Hauck, P.; Wilcox, E., Groups whose Chermak-Delgado lattice is a chain, J. Group Theory, 17, 2, 253-265 (2014) · Zbl 1308.20018
[5] Brewster, B.; Hauck, P.; Wilcox, E., Quasi-antichain Chermak-Delgado lattice of finite groups, Arch. Math., 103, 4, 301-311 (2014) · Zbl 1308.20019
[6] Brewster, B.; Wilcox, E., Some groups with computable Chermak-Delgado lattices, Bull. Aust. Math. Soc., 86, 1, 29-40 (2012) · Zbl 1259.20022
[7] Brush, E.; Dietz, J.; Johnson-Tesch, K.; Power, B., On the Chermak-Delgado lattices of split metacyclic p-groups, Involve, 9, 5, 765-782 (2016) · Zbl 1348.20023
[8] Chermak, A.; Delgado, A., A measuring argument for finite groups, Proc. Am. Math. Soc., 107, 4, 907-914 (1989) · Zbl 0687.20022
[9] Cocke, W., Subnormality and the Chermak-Delgado lattice, J. Algebra Appl., 19, 8, Article 2050141 pp. (2020) · Zbl 1481.20098
[10] Glauberman, G., Centrally large subgroups of finite p-groups, J. Algebra, 300, 480-508 (2006) · Zbl 1103.20013
[11] Hall, P., The classification of prime-power group, J. Reine Angew. Math., 182, 130-141 (1940) · Zbl 0023.21001
[12] Huppert, B., Endliche Gruppen I (1967), Springer-Verlag: Springer-Verlag Berlin · Zbl 0217.07201
[13] Huppert, B.; Blackburn, N., Finite Groups III (1982), Springer-Verlag: Springer-Verlag Berlin · Zbl 0514.20002
[14] Isaacs, I. M., Finite Group Theory (2008), American Mathematical Society · Zbl 1169.20001
[15] McCulloch, R., Chermak-Delgado simple groups, Commun. Algebra, 45, 3, 983-991 (2017) · Zbl 1379.20005
[16] McCulloch, R., Finite groups with a trivial Chermak-Delgado subgroup, J. Group Theory, 21, 3, 449-461 (2018) · Zbl 1436.20029
[17] McCulloch, R.; Tǎrnǎuceanu, M., Two classes of finite groups whose Chermak-Delgado lattice is a chain of length zero, Commun. Algebra, 46, 7, 3092-3096 (2018) · Zbl 1429.20011
[18] Morresi Zuccari, A.; Russo, V.; Scoppola, C. M., The Chermak-Delgado measure in finite p-groups, J. Algebra, 502, 262-276 (2018) · Zbl 1403.20032
[19] Tǎrnǎuceanu, M., The Chermak-Delgado lattice of ZM-groups, Results Math., 72, 4, 1849-1855 (2017) · Zbl 1386.20014
[20] Tǎrnǎuceanu, M., A note on the Chermak-Delgado lattice of a finite group, Commun. Algebra, 46, 1, 201-204 (2018) · Zbl 1394.20012
[21] Tǎrnǎuceanu, M., Finite groups with a certain number of values of the Chermak-Delgado measure, J. Algebra Appl., 19, 5, Article 2050088 pp. (2020) · Zbl 1453.20033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.