×

Groups whose Chermak-Delgado lattice is a subgroup lattice of an abelian group. (English) Zbl 1515.20104

Summary: The Chermak-Delgado lattice of a finite group \(G\) is a self-dual sublattice of the subgroup lattice of \(G\). In this paper, we prove that, for any finite abelian group \(A\), there exists a finite group \(G\) such that the Chermak-Delgado lattice of \(G\) is a subgroup lattice of \(A\).

MSC:

20D30 Series and lattices of subgroups
20D15 Finite nilpotent groups, \(p\)-groups
Full Text: DOI

References:

[1] An, L., Groups whose Chermak-Delgado lattice is a quasi-antichain. J. Group Theory22(2019), no. 3, 529-544. · Zbl 1457.20021
[2] An, L., Groups whose Chermak-Delgado lattice is a subgroup lattice of an elementary abelian p-group. Comm. Algebra50(2022), no.7, 2846-2853. · Zbl 1520.20041
[3] An, L., Twisted centrally large subgroups of finite groups. J. Algebra604(2022), 87-106. · Zbl 1514.20080
[4] An, L., Brennan, J., Qu, H., and Wilcox, E., Chermak-Delgado lattice extension theorems. Comm. Algebra43(2015), no. 5, 2201-2213. · Zbl 1327.20020
[5] Brewster, B., Hauck, P., and Wilcox, E., Groups whose Chermak-Delgado lattice is a chain. J. Group Theory17(2014), no. 2, 253-265. · Zbl 1308.20018
[6] Brewster, B., Hauck, P., and Wilcox, E., Quasi-antichain Chermak-Delgado lattices of finite groups. Arch. Math.103(2014), no. 4, 301-311. · Zbl 1308.20019
[7] Brewster, B. and Wilcox, E., Some groups with computable Chermak-Delgado lattices. Bull. Aust. Math. Soc.86(2012), no. 1, 29-40. · Zbl 1259.20022
[8] Brush, E., Dietz, J., Johnson-Tesch, K., and Power, B., On the Chermak-Delgado lattices of split metacyclic p-groups. Involve9(2016), no. 5, 765-782. · Zbl 1348.20023
[9] Chermak, A. and Delgado, A., A measuring argument for finite groups. Proc. Amer. Math. Soc.107(1989), no. 4, 907-914. · Zbl 0687.20022
[10] Cocke, W., Subnormality and the Chermak-Delgado lattice. J. Algebra Appl.19(2020), no. 8, 2050141, 7 pp. · Zbl 1481.20098
[11] Glauberman, G., Centrally large subgroups of finite p-groups. J. Algebra300(2006), 480-508. · Zbl 1103.20013
[12] Isaacs, I. M., Finite group theory, American Mathematical Society, Providence, RI, 2008. · Zbl 1169.20001
[13] Mcculloch, R., Chermak-Delgado simple groups. Comm. Algebra45(2017), no. 3, 983-991. · Zbl 1379.20005
[14] Mcculloch, R., Finite groups with a trivial Chermak-Delgado subgroup. J. Group Theory21(2018), no. 3, 449-461. · Zbl 1436.20029
[15] Mcculloch, R. and Tǎrnǎuceanu, M., Two classes of finite groups whose Chermak-Delgado lattice is a chain of length zero. Comm. Algebra46(2018), no. 7, 3092-3096. · Zbl 1429.20011
[16] Mcculloch, R. and Tǎrnǎuceanu, M., On the Chermak-Delgado lattice of a finite group. Comm. Algebra48(2020), no. 1, 37-44. · Zbl 1485.20061
[17] Morresi Zuccari, A., Russo, V., and Scoppola, C. M., The Chermak-Delgado measure in finite p-groups. J. Algebra502(2018), 262-276. · Zbl 1403.20032
[18] Schmidt, R., Subgroup lattices of groups, Walter de Gruyter, Berlin, New York, 1994. · Zbl 0843.20003
[19] Tǎrnǎuceanu, M., The Chermak-Delgado lattice of ZM-groups. Results Math.72(2017), no. 4, 1849-1855. · Zbl 1386.20014
[20] Tǎrnǎuceanu, M., A note on the Chermak-Delgado lattice of a finite group. Comm. Algebra.46(2018), no. 1, 201-204. · Zbl 1394.20012
[21] Tǎrnǎuceanu, M., Finite groups with a certain number of values of the Chermak-Delgado measure. J. Algebra Appl.19 (2020), no.5, 2050088, 7 pp. · Zbl 1453.20033
[22] Wilcox, E., Exploring the Chermak-Delgado lattice. Math. Magazine89(2016), no. 1, 38-44. · Zbl 1397.20030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.