×

Construction of invertible input-output mappings and parameter identification. (English. Russian original) Zbl 1409.93019

Differ. Equ. 54, No. 11, 1524-1534 (2018); translation from Differ. Uravn. 54, No. 11, 1547-1556 (2018).
Summary: The problem of continuation of an input-output mapping to a right invertible mapping is solved. The proposed solution is based on transforming the system to a normal form and solving the problem for such systems. The well-known Singh inversion algorithm is modified to calculate the normal forms. It is proved that each step of the modified algorithm can be realized and the result of the algorithm application is a normal form. A new approach to the parameter identification problem based on the inversion of the input-output mapping is proposed to illustrate the application of the results.

MSC:

93B15 Realizations from input-output data
93B10 Canonical structure
93B30 System identification
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Fliess, M., A note on invertibility of nonlinear input-output differential systems, Syst. Control Lett., 1986, vol. 8, no. 2, pp. 147-151. · Zbl 0634.93035 · doi:10.1016/0167-6911(86)90073-3
[2] Di Benedetto, M.D., Grizzle, J.W., and Moog, C.H., Rank invariants of nonlinear systems, SIAM J. Control Optim., 1989, vol. 27, no. 3, pp. 658-672 · Zbl 0696.93033 · doi:10.1137/0327035
[3] Conte, G., Moog, C.H., and Perdon, A.M., Algebraic Methods for Nonlinear Control Systems, London: Springer, 2007. · Zbl 1130.93030 · doi:10.1007/978-1-84628-595-0
[4] Il’in, A.V., Korovin, S.K., and Fomichev, V.V., Metody robastnogo obrashcheniya dinamicheskikh sistem (Methods of Robust Inversion of Dynamical Systems), Moscow: Fizmatlit, 2009. · Zbl 1219.49001
[5] Singh, S.N., A modified algorithm for invertibility in nonlinear systems, IEEE Trans. Automat. Control, 1981, vol. 26, no. 2, pp. 595-598. · Zbl 0488.93026 · doi:10.1109/TAC.1981.1102657
[6] Silverman, L., Inversion of multivariable linear systems, IEEE Trans. Automat. Control, 1969, vol. 14, no. 3, pp. 270-276. · doi:10.1109/TAC.1969.1099169
[7] Hirschorn, R.M., Invertibility of multivariable nonlinear systems, IEEE Trans. Automat. Control, 1979, vol. 24, no. 6, pp. 855-865. · Zbl 0427.93020 · doi:10.1109/TAC.1979.1102181
[8] Schenkendorf, R. and Mangold, M., Parameter identification for ordinary and delay differential equations by using flat inputs, Theor. Found. Chem. Eng., 2014, vol. 48, no. 5, pp. 594-607. · doi:10.1134/S0040579514050224
[9] Fliess, M., Lévine, J., Martin, Ph., and Rouchon, P., A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 5, pp. 922-937. · Zbl 0964.93028 · doi:10.1109/9.763209
[10] Wald, S. and Zeitz, M., Flat inputs in the MIMO case, IFAC Proc. Volumes, 2010, vol. 43, no. 14, pp. 695-700. · doi:10.3182/20100901-3-IT-2016.00147
[11] Kalitkin, N.N., Chislennye metody (Numerical Methods), Moscow: Nauka, 1978.
[12] Mboup, M.; Join, C.; Fliess, M., A revised look at numerical differentiation with an application to nonlinear feedback control (2007)
[13] Mboup, M., Join, C., and Fliess, M., Numerical differentiation with annihilators in noisy environment, Numer. Algorithms, 2009, vol. 50, no. 4, pp. 439-467. · Zbl 1162.65009 · doi:10.1007/s11075-008-9236-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.