×

Robust adaptive parameter estimator design for a multi-sinusoidal signal with fixed-time stability and guaranteed prescribed performance boundary of estimation error. (English) Zbl 1506.93043

Summary: In online parameter estimation, fast and accurate estimation without dependence on the initial conditions with good transient properties is an essential issue. Hence, in this paper, a robust adaptive parameter estimation method is proposed that not only can estimate online the unknown parameters of a multi sinusoidal signal in a finite-time without dependence on the initial conditions but also can guarantee the transient and steady-state performance of the estimated parameters with a predefined boundary. At first, to estimate the frequency, offset, phase and amplitude, the multi-sinusoidal signal is represented in a linear regression form. Then, by defining an auxiliary regressor matrix and vector derived by the original regressor vector and output signal, the estimation error is computed indirectly. By employing this parameter estimation error and utilizing the fixed-time stability property of the terminal sliding mode method and prescribed-performance concept, robust adaptation laws are designed in such a way that the convergence time of the estimation error is finite so that its settling time is independent from the initial guess, and this time can be predefined. Moreover the estimation error boundary can be predefined. Furthermore, in this method, only the output measurement is needed and there is no need for any observer or predictor. Using the Lyapunov stability theorem it is proved that the estimation error converges to zero when the measurement is free of noise and for the noisy case the estimation error is uniformly ultimately bounded and converges to a compact set around the origin. Three illustrative examples are provided to demonstrate the advantages and effectiveness of the designed estimation laws compared to some existing methods. Simulation results show that the proposed method can estimate the unknown parameters in fixed-time with a pre-adjustable estimation error boundary, even in the presence of measurement noise and confirms the superiority of the proposed method compared to the two existing methods.

MSC:

93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93D40 Finite-time stability
Full Text: DOI

References:

[1] Jiles, D. C.; Atherton, D. L., Theory of ferromagnetic hysteresis, J. Magn. Magn. Mater., 61, 1-2, 48-60 (1986)
[2] Na, J.; Yang, J.; Wu, X.; Guo, Y., Robust adaptive parameter estimation of sinusoidal signals, Automatica, 53, 376-384 (2015) · Zbl 1371.93194
[3] Ríos, H.; Efimov, D.; Moreno, J. A.; Perruquetti, W.; Rueda-Escobedo, J. G., Time-varying parameter identification algorithms: finite and fixed-time convergence, IEEE Trans. Autom. Control, 62, 7, 3671-3678 (2017) · Zbl 1370.93091
[4] Huijberts, H.; Nijmeijer, H.; Willems, R., System identification in communication with chaotic systems, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 47, 6, 800-808 (2000) · Zbl 0972.93017
[5] Sun, W.; Li, H.; Han, Q., Identification of mechanical parameters of hard-coating materials with strain-dependence, J. Mech. Sci. Technol., 28, 1, 81-92 (2014)
[6] Hasenauer, J.; Waldherr, S.; Wagner, K.; Allgöwer, F., Parameter identification, experimental design and model falsification for biological network models using semidefinite programming, IET Syst. Biol., 4, 2, 119-130 (2010)
[7] Chen, B.; Pin, G.; Ng, W. M.; Hui, S. Y.R.; Parisini, T., An adaptive-observer-based robust estimator of multi-sinusoidal signals, IEEE Trans. Autom. Control, 63, 6, 1618-1631 (2017)
[8] Isermann, R.; Münchhof, M., Identification of Dynamic Systems: An Introduction With Applications (2010), Springer Science & Business Media
[9] Chen, J.; Zhang, G.; Li, Z., On-line parameter estimation for a class of time-varying continuous systems with bounded disturbances, Int. J. Adapt. Control Signal Process., 25, 1, 18-32 (2011) · Zbl 1213.93187
[10] Li, J.; Zheng, Y.; Lin, Z., Recursive identification of time-varying systems: self-tuning and matrix RLS algorithms, Syst. Control Lett., 66, 104-110 (2014) · Zbl 1288.93088
[11] Barbedo, J. G.; Lopes, A., Estimating frequency, amplitude and phase of two sinusoids with very close frequencies, Int. J. Signal Process., 5, 2, 138-145 (2009)
[12] Wilson, P. R.; Ross, J. N.; Brown, A. D., Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm, IEEE Trans. Magn., 37, 2, 989-993 (2001)
[13] Chwastek, K.; Szczyglowski, J., Identification of a hysteresis model parameters with genetic algorithms, Math. Comput. Simul., 71, 3, 206-211 (2006) · Zbl 1097.82032
[14] Leite, J. V.; Avila, S. L.; Batistela, N. J.; Carpes, W. P.; Sadowski, N.; Kuo-Peng, P.; Bastos, J. P.A., Real coded genetic algorithm for Jiles-Atherton model parameters identification, IEEE Trans. Magn., 40, 2, 888-891 (2004)
[15] Coelho, L. D.S.; Mariani, V. C.; Leite, J. V., Solution of Jiles-Atherton vector hysteresis parameters estimation by modified differential evolution approaches, Expert Syst. Appl. Int. J., 39, 2, 2021-2025 (2012)
[16] Marion, R.; Scorretti, R.; Siauve, N.; Raulet, M. A.; Krahenbuhl, L., Identification of Jiles-Atherton model parameters using particle swarm optimization, IEEE Trans. Magn., 44, 6, 894-897 (2008)
[17] Hernandez, E. D.M.; Muranaka, C. S.; Cardoso, J. R., Identification of the Jiles-Atherton model parameters using random and deterministic searches, Phys. B, 275, 1-3, 212-215 (2000)
[18] Toman, M.; Stumberger, G.; Dolinar, D., Parameter identification of the Jiles-Atherton hysteresis model using differential evolution, IEEE Trans. Magn., 44, 6, 1098-1101 (2008)
[19] Naghizadeh, R. A.; Vahidi, B.; Hossein Hosseinian, S., Parameter identification of Jiles-Atherton model using SFLA, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 31, 4, 1293-1309 (2012) · Zbl 1358.78088
[20] Singh, S. K.; Goswami, A. K.; Sinha, N., Power system harmonic parameter estimation using bilinear recursive least square (BRLS) algorithm, Int. J. Electr. Power Energy Syst., 67, 1-10 (2015)
[21] Singh, S. K.; Sinha, N.; Goswami, A. K.; Sinha, N., Power system harmonic estimation using biogeography hybridized recursive least square algorithm, Int. J. Electr. Power Energy Syst., 83, 219-228 (2016)
[22] Singh, S. K.; Kumari, D.; Sinha, N.; Goswami, A. K.; Sinha, N., Gravity search algorithm hybridized recursive least square method for power system harmonic estimation, Eng. Sci. Technol. Int. J., 20, 3, 874-884 (2017)
[23] Kabalci, Y.; Kockanat, S.; Kabalci, E., A modified ABC algorithm approach for power system harmonic estimation problems, Electr. Power Syst. Res., 154, 160-173 (2018)
[24] Ebrahimi, S. M.; Salahshour, E.; Malekzadeh, M.; Gordillo, F., Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm, Energy, 179, 358-372 (2019)
[25] Pourmousa, N.; Ebrahimi, S. M.; Malekzadeh, M.; Alizadeh, M., Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization algorithm, Sol. Energy, 180, 180-191 (2019)
[26] Dastres, H.; Rezaie, B.; Baigzadehnoe, B., Neural-network-based adaptive backstepping control for a class of unknown nonlinear time-delay systems with unknown input saturation, Neurocomputing, 398, 131-152 (2020)
[27] Hsu, L.; Ortega, R.; Damm, G., A globally convergent frequency estimator, IEEE Trans. Autom. Control, 44, 4, 698-713 (1999) · Zbl 0958.93089
[28] Marino, R.; Tomei, P., Global estimation of n unknown frequencies, IEEE Trans. Autom. Control, 47, 8, 1324-1328 (2002) · Zbl 1364.93778
[29] Obregon-Pulido, G.; Castillo-Toledo, B.; Loukianov, A., A globally convergent estimator for n-frequencies, IEEE Trans. Autom. Control, 47, 5, 857-863 (2002) · Zbl 1364.62222
[30] Xia, X., Global frequency estimation using adaptive identifiers, IEEE Trans. Autom. Control, 47, 7, 1188-1193 (2002) · Zbl 1364.93789
[31] Pay, M. L.; Ahmed, H., Parameter estimation of harmonics-polluted single-phase grid voltage signal, Electr. Eng., 102, 1351-1359 (2020)
[32] Aranovskiy, S.; Bobtsov, A.; Kremlev, A.; Nikolaev, N.; Slita, O., Identification of frequency of biased harmonic signal, IFAC Proc. Vol., 40, 13, 167-172 (2007)
[33] Hou, M., Amplitude and frequency estimator of a sinusoid, IEEE Trans. Autom. Control, 50, 6, 855-858 (2005) · Zbl 1365.93485
[34] Hou, M., Estimation of sinusoidal frequencies and amplitudes using adaptive identifier and observer, IEEE Trans. Autom. Control, 52, 3, 493-499 (2007) · Zbl 1366.93634
[35] Hou, M., Parameter identification of sinusoids, IEEE Trans. Autom. Control, 57, 2, 467-472 (2011) · Zbl 1369.94170
[36] Petrović, P., Frequency and parameter estimation of multi-sinusoidal signal, Meas. Sci. Rev., 12, 5, 175-183 (2012)
[37] Stoica, P.; Moses, R. L.; Friedlander, B.; Soderstrom, T., Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements, IEEE Trans. Acoust., 37, 3, 378-392 (1989)
[38] Saberi, S.; Rezaie, B., Direct speed control of PMSG-based airborne wind energy system using adative FCS-MPC method, ISA Trans. (2022)
[39] Dastres, H.; Mohammadi, A.; Rezaie, B., Adaptive robust control design to maximize the harvested power in a wind turbine with input constraint, J. Renew. Energy Environ., 7, 4, 30-43 (2020)
[40] Dastres, H.; Mohammadi, A.; Shamekhi, M., A neural network based adaptive sliding mode controller for pitch angle control of a wind turbine, (Proceedings of the 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) (2020), IEEE), 1-6
[41] Pin, G.; Assalone, A.; Lovera, M.; Parisini, T., Non-asymptotic kernel-based parametric estimation of continuous-time linear systems, IEEE Trans. Autom. Control, 61, 2, 360-373 (2015) · Zbl 1359.93122
[42] Pin, G.; Chen, B.; Parisini, T., Robust finite-time estimation of biased sinusoidal signals: a Volterra operators approach, Automatica, 77, 120-132 (2017) · Zbl 1355.93049
[43] Li, P.; Fedele, G.; Pin, G.; Parisini, T., Kernel-based deadbeat parametric estimation of bias-affected damped sinusoidal signals, (Proceedings of the European Control Conference (ECC) (2016), IEEE), 519-524, In
[44] Chen, B.; Li, P.; Pin, G.; Fedele, G.; Parisini, T., Finite-time estimation of multiple exponentially-damped sinusoidal signals: a kernel-based approach, Automatica, 106, 1-7 (2019) · Zbl 1429.93364
[45] Lu, J.; Brown, L. J., Identification of exponentially damped sinusoidal signals, IFAC Proc. Vol., 41, 2, 5089-5094 (2008)
[46] Mansouri, M.; Mojiri, M.; Ghadiri-Modarres, M. A.; Karimi-Ghartemani, M., Estimation of electromechanical oscillations from phasor measurements using second-order generalized integrator, IEEE Trans. Instrum. Meas., 64, 4, 943-950 (2014)
[47] Mboup, M., Parameter estimation for signals described by differential equations, Appl. Anal., 88, 1, 29-52 (2009) · Zbl 1164.94003
[48] Neves, A.; Miranda, M. D.; Mboup, M., Algebraic parameter estimation of damped exponentials, (Proceedings of the 15th European Signal Processing Conference (2007), IEEE), 965-969, In
[49] Wang, J.; Efimov, D.; Aranovskiy, S.; Bobtsov, A. A., Fixed-time estimation of parameters for non-persistent excitation, Eur. J. Control, 55, 24-32 (2020) · Zbl 1451.93334
[50] Efimov, D.; Aranovskiy, S.; Bobtsov, A. A.; Raïssi, T., On fixed-time parameter estimation under interval excitation, (Proceedings of the European Control Conference (ECC) (2020), IEEE), 246-251, In
[51] Aranovskiy, S.; Bobtsov, A.; Ortega, R.; Pyrkin, A., Improved transients in multiple frequencies estimation via dynamic regressor extension and mixing, IFAC-PapersOnLine, 49, 13, 99-104 (2016)
[52] Vediakova, A., Vedyakov, A., Pyrkin, A., Bobtsov, A. and Gromov, V., 2020. Frequency estimation of multi-sinusoidal signals in finite-time. arXiv preprint arXiv:2009.06400. · Zbl 07361410
[53] Wang, J.; Efimov, D.; Bobtsov, A. A., On robust parameter estimation in finite-time without persistence of excitation, IEEE Trans. Autom. Control, 65, 4, 1731-1738 (2019) · Zbl 1533.93783
[54] Yang, J.; Na, J.; Wu, X.; Guo, Y., Adaptive parameter estimation with guaranteed prescribed performance, (Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC) (2014), IEEE), 2515-2520, In
[55] Duan, X.; Zhi, J.; Chen, H.; Dong, X., Two novel robust adaptive parameter estimation methods with prescribed performance and relaxed PE condition, Sci. China Inf. Sci., 61, 12, 1-3 (2018)
[56] Sastry, S.; Bodson, M., Adaptive Control: Stability, Convergence and Robustness (2011), Courier Corporation
[57] Ni, J.; Liu, L.; Liu, C.; Hu, X.; Shen, T., Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system, Nonlinear Dyn., 86, 1, 401-420 (2016) · Zbl 1349.93159
[58] Zhang, Y.; Hua, C.; Li, K., Disturbance observer-based fixed-time prescribed performance tracking control for robotic manipulator, Int. J. Syst. Sci., 50, 13, 2437-2448 (2019) · Zbl 1483.93228
[59] Chen, L.; Yang, H., Adaptive neural prescribed performance output feedback control of pure feedback nonlinear systems using disturbance observer, Int. J. Adapt. Control Signal Process., 34, 4, 520-542 (2020) · Zbl 1469.93057
[60] Shi, W.; Luo, R.; Li, B., Adaptive fuzzy prescribed performance control for MIMO nonlinear systems with unknown control direction and unknown dead-zone inputs, ISA Trans., 66, 86-95 (2017)
[61] Wang, W.; Wang, D.; Peng, Z.; Li, T., Prescribed performance consensus of uncertain nonlinear strict-feedback systems with unknown control directions, IEEE Trans. Syst. Man Cybern.: Syst., 46, 9, 1279-1286 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.