×

Asymptotic properties of least squares estimators and sequential least squares estimators of a chirp-like signal model parameters. (English) Zbl 1509.94016

Circuits Syst. Signal Process. 40, No. 11, 5421-5465 (2021); correction ibid. 40, No. 11, 5466-5467 (2021).
Summary: Sinusoidal model and chirp model are the two fundamental models in digital signal processing. Recently, a chirp-like model was introduced by R. Grover et al. [GUCON 2018, 1095–1100 (2018; doi:10.1109/GUCON.2018.8674970)]. A chirp-like model is a generalization of a sinusoidal model and provides an alternative to a chirp model. We derive, in this paper, the asymptotic properties of least squares estimators and sequential least squares estimators of the parameters of a chirp-like signal model. It is observed theoretically as well as through extensive numerical computations that the sequential least squares estimators perform at par with the usual least squares estimators. The computational complexity involved in the sequential algorithm is significantly lower than that involved in calculating the least squares estimators. This is achieved by exploiting the orthogonality structure of the different components of the underlying model. The performances of both the estimators for finite sample sizes are illustrated by simulation results. In the specific real-life data analyses of signals, we show that a chirp-like signal model is capable of modeling phenomena that can be otherwise modeled by a chirp signal model, in a computationally more efficient manner.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

BRENT
Full Text: DOI

References:

[1] Abatzoglou, TJ, Fast maximum likelihood joint estimation of frequency and frequency rate, IEEE Trans. Aerosp. Electron. Syst., 6, 708-715 (1986) · doi:10.1109/TAES.1986.310805
[2] Bello, P., Joint estimation of delay, Doppler, and Doppler rate, IRE Trans. Inf. Theory, 6, 3, 330-341 (1960) · doi:10.1109/TIT.1960.1057562
[3] R.P. Brent, Algorithms for Minimization without Derivatives, chap. 4 (1973) · Zbl 0245.65032
[4] P.G. Casazza, M. Fickus, Fourier transforms of finite chirps. EURASIP J. Appl. Signal Process. 2006. Article ID 70204, 1-7 (2006) · Zbl 1122.94009
[5] Christensen, MG; Stoica, P.; Jakobsson, A.; Jensen, SH, Multi-pitch estimation, Signal Process., 88, 4, 972-983 (2008) · Zbl 1186.94091 · doi:10.1016/j.sigpro.2007.10.014
[6] Djuric, PM; Kay, SM, Parameter estimation of chirp signals, IEEE Trans. Acoust. Speech Signal Process., 38, 12, 2118-2126 (1990) · doi:10.1109/29.61538
[7] P. Flandrin, Time-frequency processing of bat sonar signals, in Animal Sonar (Springer, Boston, MA, 1988), pp. 797-802
[8] P. Flandrin, March. Time frequency and chirps, in Wavelet Applications VIII. International Society for Optics and Photonics, vol. 4391, pp. 161-176 (2001)
[9] Fuller, WA, Introduction to statistical Time Series (2009), New York: Wiley, New York
[10] Gholami, S.; Mahmoudi, A.; Farshidi, E., Two-stage estimator for frequency rate and initial frequency in LFM signal using linear prediction approach, Circuits Syst. Signal Process., 38, 1, 105-117 (2019) · doi:10.1007/s00034-018-0843-3
[11] Gini, F.; Luise, M.; Reggiannini, R., Cramer-Rao bounds in the parametric estimation of fading radiotransmission channels, IEEE Trans. Commun., 46, 10, 1390-1398 (1998) · doi:10.1109/26.725316
[12] R. Grover, D. Kundu, A. Mitra,, Chirp-like model and its parameters estimation, in 2018 International Conference on Computing, Power and Communication Technologies (GUCON) (IEEE, 2018), pp. 1095-1100
[13] Hassani, H.; Thomakos, D., A review on singular spectrum analysis for economic and financial time series, Stat. Interface, 3, 3, 377-397 (2010) · Zbl 1245.91078 · doi:10.4310/SII.2010.v3.n3.a11
[14] Ikram, MZ; Abed-Meraim, K.; Hua, Y., Fast quadratic phase transform for estimating the parameters of multicomponent chirp signals, Digital Signal Process., 7, 2, 127-135 (1997) · doi:10.1006/dspr.1997.0286
[15] Jones, DL; Baraniuk, RG, An adaptive optimal-kernel time-frequency representation, IEEE Trans. Signal Process., 43, 10, 2361-2371 (1995) · doi:10.1109/78.469854
[16] Kay, SM; Marple, SL, Spectrum analysis—a modern perspective, Proc. IEEE, 69, 11, 1380-1419 (1981) · doi:10.1109/PROC.1981.12184
[17] Kelly, EJ, The radar measurement of range, velocity and acceleration, IRE Trans. Mil. Electron., 1051, 2, 51-57 (1961) · doi:10.1109/IRET-MIL.1961.5008321
[18] D. Kundu, S. Nandi, Parameter estimation of chirp signals in presence of stationary noise. Stat. Sinica 18(1), 187-201 (2008) · Zbl 1137.62315
[19] D. Kundu, S. Nandi, Statistical Signal Processing: Frequency Estimation. New Delhi (2012) · Zbl 1248.94003
[20] A. Lahiri, Estimators of Parameters of Chirp Signals and Their Properties. PhD thesis, Indian Institute of Technology, Kanpur (2011)
[21] Lahiri, A.; Kundu, D.; Mitra, A., On least absolute deviation estimators for one-dimensional chirp model, Statistics, 48, 2, 405-420 (2014) · Zbl 1367.62057 · doi:10.1080/02331888.2012.719519
[22] Lahiri, A.; Kundu, D.; Mitra, A., Estimating the parameters of multiple chirp signals, J. Multivar. Anal., 139, 189-206 (2015) · Zbl 1348.60045 · doi:10.1016/j.jmva.2015.01.019
[23] Li, L.; Qiu, T., A robust parameter estimation of LFM signal based on sigmoid transform under the alpha stable distribution noise, Circuits Systems Signal Process., 38, 7, 3170-3186 (2019) · doi:10.1007/s00034-018-1008-0
[24] A.M. Legendre, Nouvelles méthodes pour la détermination des orbites des cométes. F. Didot (1805)
[25] N. Ma, D. Vray, Bottom backscattering coefficient estimation from wideband chirp sonar echoes by chirp adapted time-frequency representation, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 4 (IEEE, 1998), pp. 2461-2464
[26] Mazumder, S., Single-step and multiple-step forecasting in one-dimensional single chirp signal using MCMC-based Bayesian analysis, Commun. Stat. Simul. Comput., 46, 4, 2529-2547 (2017) · Zbl 1462.62185 · doi:10.1080/03610918.2015.1053921
[27] Mboup, M.; Adal, T., A generalization of the Fourier transform and its application to spectral analysis of chirp-like signals, Appl. Comput. Harmon. Anal., 32, 2, 305-312 (2012) · Zbl 1243.42019 · doi:10.1016/j.acha.2011.11.002
[28] McAulay, R.; Quatieri, T., Speech analysis/synthesis based on a sinusoidal representation, IEEE Trans. Acoust. Speech Signal Process., 34, 4, 744-754 (1986) · doi:10.1109/TASSP.1986.1164910
[29] Montgomery, HL, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis (1994), Providence: American Mathematical Society, Providence · Zbl 0814.11001 · doi:10.1090/cbms/084
[30] Murthy, VK; Haywood, LJ; Richardson, J.; Kalaba, R.; Salzberg, S.; Harvey, G.; Vereeke, D., Analysis of power spectral densities of electrocardiograms, Math. Biosci., 12, 1-2, 41-51 (1971) · doi:10.1016/0025-5564(71)90072-1
[31] Nandi, S.; Kundu, D., Asymptotic properties of the least squares estimators of the parameters of the chirp signals, Ann. Inst. Stat. Math., 56, 3, 529-544 (2004) · Zbl 1057.62002 · doi:10.1007/BF02530540
[32] Neuberg, J.; Luckett, R.; Baptie, B.; Olsen, K., Models of tremor and low-frequency earthquake swarms on Montserrat, J. Volcanol. Geoth. Res., 101, 1-2, 83-104 (2000) · doi:10.1016/S0377-0273(00)00169-4
[33] Peleg, S.; Porat, B., Linear FM signal parameter estimation from discrete-time observations, IEEE Trans. Aerosp. Electron. Syst., 27, 4, 607-616 (1991) · doi:10.1109/7.85033
[34] Prasad, S.; Chakraborty, M.; Parthasarathy, H., The role of statistics in signal processing—‘a brief review and some emerging trends, Indian J. Pure Appl. Math., 26, 547-578 (1995) · Zbl 0836.62080
[35] Rice, JA; Rosenblatt, M., On frequency estimation, Biometrika, 75, 3, 477-484 (1988) · Zbl 0654.62077 · doi:10.1093/biomet/75.3.477
[36] F.SG. Richards, A method of maximum-likelihood estimation. J. R. Stat. Soc. Ser. B (Methodol.), pp. 469-475 (1962) · Zbl 0104.13003
[37] Saha, S.; Kay, SM, Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling, IEEE Trans. Signal Process., 50, 2, 224-230 (2002) · doi:10.1109/78.978378
[38] Song, J.; Xu, Y.; Liu, Y.; Zhang, Y., Investigation on Estimator of Chirp Rate and Initial Frequency of LFM Signals Based on Modified Discrete Chirp Fourier Transform, Circuits Systems Signal Process., 38, 12, 5861-5882 (2019) · doi:10.1007/s00034-019-01171-5
[39] Stoica, P., List of references on spectral line analysis, Signal Process., 31, 3, 329-340 (1993) · doi:10.1016/0165-1684(93)90090-W
[40] VanderPlas, JT; Ivezic, Ž., Periodograms for multiband astronomical time series, Astrophys J, 812, 1, 18 (2015) · doi:10.1088/0004-637X/812/1/18
[41] G. Wang, X.G. Xia, An adaptive filtering approach to chirp estimation and ISAR imaging of maneuvering targets, in Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]. (IEEE, 2000), pp. 481-486
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.