×

Fixed-time convergent sliding-modes-based differentiators. (English) Zbl 1478.93087

Summary: Conventional sliding-modes based differentiators make it possible to estimate successive derivatives of a given time-varying signal in finite-time and with exact convergence in noise free case. In general, the convergence time is an unbounded increasing function of initial estimation errors. Most already proposed solutions guarantee a convergence in a maximum time independent of initial conditions. In this paper, novel sliding mode differentiators with a prescribed convergence time are proposed. The convergence time can be chosen arbitrary whatever large initial estimation errors. The proposed key solution is based on a time-dependent transformation using modulating functions which make it possible to cancel the effect of initial conditions on the convergence time. New arbitrary order differentiators including the super-twisting algorithm based on modulating functions are introduced. Lyapunov functions and homogeneity tools are used to prove the convergence of the proposed first-order and arbitrary order differentiators, respectively. Robustness with respect to measurement noise is also addressed.

MSC:

93B12 Variable structure systems
93D40 Finite-time stability
93C15 Control/observation systems governed by ordinary differential equations
Full Text: DOI

References:

[1] Li, Y.; Ang, K. H.; Chong, GCY, PID Control systems analysis and design, IEEE Control Syst, 26, 1, 32-41 (2000)
[2] Levant, A., High-order sliding modes differentiation and output feedback, Internat J Control, 76, 9/10, 924-941 (2003) · Zbl 1049.93014
[3] Levant, A., Filtering differentiators and observers, (15th International workshop on variable structure systems (VSS) (2018), Graz University of Technology: Graz University of Technology Graz, Austria), July 9-11
[4] Levant, A.; Livne, M., Robust exact filtering differentiators, Eur J Control, 55, 2020, 33-44 (2020) · Zbl 1451.93391
[5] Levant, A.; Yu, X., Sliding-mode-based differentiation and filtering, IEEE Trans Automat Control, 63, 9, 3061-3067 (2018) · Zbl 1423.93078
[6] Ibrir, S.; Diop, S., A numerical procedure for filtering and efficient high-order signal differentiation, Int J Appl Math Comput Sci, 14, 201-208 (2004) · Zbl 1076.93042
[7] Mboup, M.; Join, C.; Fliess, M., Numerical differentiation with annihilators in noisy environnement, Numer Algorithms, 50, 4, 439-467 (2009) · Zbl 1162.65009
[8] Khalil, H. K., High-gain observer in nonlinear feedback control (2017), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 1380.93002
[9] Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A., Sliding mode control and observation (2014), Springer Science Business Media: Springer Science Business Media New-York
[10] Levant, A., Robust exact differentiation via sliding mode technique, Automatica, 34, 3, 379-384 (1998) · Zbl 0915.93013
[11] Pisano, A.; Usai, E., Globally convergent real-time differentiation via second order sliding modes, Internat J Systems Sci, 38, 10, 833-844 (2007) · Zbl 1128.93020
[12] Levant, A.; Livne, M.; Yu, X., Sliding-mode-based differentiation and its application, IFAC-Papers Online, 50, 1, 1699-1704 (2017)
[13] Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41, 5, 823-830 (2005) · Zbl 1093.93003
[14] Cruz-Zavala, E.; Moreno, J. A., Homogeneous high order sliding mode design: A Lyapunov approach, Automatica, 80, 232-238 (2017) · Zbl 1370.93073
[15] Oliveira, T. R.; Rodrigues, V. H.P.; Estrada, A.; Fridman, L., HOSM Differentiator with varying gains for global/semi-global output feedback, IFAC-Papers Online, 50-51 (2017), 1728-1735
[16] Cruz-Zavala, E.; Moreno, J. A.; Fridman, L., Uniform robust exact differentiator, IEEE Trans Automat Control, 56, 11, 2727-2733 (2012) · Zbl 1368.94028
[17] Angulo, M. T.; Moreno, J. A.; Fridman, L., Robust exact convergent arbitrary order differentiator, Automatica, 49, 2489-2495 (2013) · Zbl 1364.93119
[18] Seeber, R., Three counterexamples to recent results on finite- and fixed-time convergent controllers and observers, Automatica, 112, Article 108678 pp. (2020) · Zbl 1430.93032
[19] Moreno, J. A., Arbitrary order fixed-time differentiators, IEEE Trans Autom Cont Early Access (2021)
[20] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM J Control Optim, 38, 3, 751-766 (1986) · Zbl 0945.34039
[21] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans Automat Control, 57, 2106-2110 (2012) · Zbl 1369.93128
[22] Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: implicit Lyapunov function approach, Automatica, 51, 2015, 332-340 (2015) · Zbl 1309.93135
[23] Sánchez-Torres, J. D.; Gómez-Gutiérrez, D.; López, E.; Loukianov, A. G., A class of predefined-time stable dynamical systems, IMA J Math Control Inform, 35, Issue Supplement 1, i1-i29 (2018) · Zbl 1402.93192
[24] Holloway, J.; Krstic, M., Prescribed-time observers for linear systems in observer canonical form, IEEE Trans Automat Control, 64, 9, 3905-3912 (2019) · Zbl 1482.93201
[25] Song, Y.; Wang, Y.; Krstic, M., Time-varying feedback for stabilization in prescribed finite time, Internat J Robust Nonlinear Control, 29, 3, 618-633 (2018) · Zbl 1411.93152
[26] Chitour, Y.; Ushirobira, R.; Bouhemou, H., Stabilization for a perturbed chain of integrators in prescribed time, SIAM J Control Optim, 58, 2, 1022-1048 (2020) · Zbl 1441.93218
[27] Aldana López, R.; Gómez Gutiérrez, D.; Jiménez Rodriguez, E.; Sánchez Torres, J. D.; Defoort, M., Enhancing the settling time estimation of a class of fixed-time stable systems, Internat J Robust Nonlinear Control, 29, 12, 4135-4148 (2019) · Zbl 1426.93236
[28] Moreno, J. A., Exact differentiator with varying gains, Internat J Control, 91, 9, 1983-1993 (2018) · Zbl 1401.93059
[29] Holloway, J.; Krstic, M., Prescribed time output feedback for linear systems in controllable canonical form, Automatica, 107, 107, 77-85 (2019) · Zbl 1429.93116
[30] Aldana-López, R.; Gómez-Gutiérreza, D.; Rodriguez, E. Jiménez.; Sánchez-Torres, J. D.; Defoort, M., On the design of new classes of predefined-time stable systems: A time-scaling approach, Math Comput Sci (2019), arXiv: Optimization and Control, preprint arXiv:1901.02782
[31] Aldana-López, R.; Gómez-Gutiérrez, D.; Angulo, M. T.; Defoort, M., A methodology for designing fixed-time systems with a predefined upper-bound in their settling time, Math Comput Sci Eng (2020), preprint arXiv:2001.06707
[32] Gómez-Gutiérrez, D., On the design of non autonomous fixed-time controllers with a predefined upper bound of the settling time, Internat J Robust Nonlinear Control, 30, 10, 3871-3885 (2020) · Zbl 1466.93141
[33] Seeber, R.; Haimovich, H.; Horn, M.; Fridman, L.; De Battista, H., Robust exact differentiators with predefined convergence time (2021), prearXiv:2005.12366v2, submitted to Automatica
[34] Orlov, Y.; Kairuz, R. I.V.; Aguilar, L. T., Prescribed-time robust differentiator design using finite varying gains, IEEE Trans Syst Lett, 6, 620-625 (2022)
[35] Shinbrot, M., On the analysis of linear and nonlinear dynamic systems from transient-response data, National Advisory Committee for Aeronautics NACATechnical Note (1954)
[36] Pin G, Lovera M, Assalone A, Parisini T. Kernel-based non asymptotic state estimation for linear continuous-time system. In: Proceedings of the American control conference, Washing, DC. 2013. pp. 3123-28. · Zbl 1359.93122
[37] Jouffroy J, Reger J. Finite-time simultaneous parameter and sate estimation using modulating functions. In: Proceeding of the IEEE Conference on Control and Applications (CCA). 2015. p. 394-9.
[38] Noack M, Rueda-Escobedo JG, Reger J, Moreno JA. Fixed time parameter estimation in polynomial systems through modulating functions. In: 55th IEEE conference on decision and control, Las Vegas, NV, 12-14 December. 2016. p. 2067-72.
[39] Pin G, Chen B, Parisini T. The Modulation Integral Observer for Linear Continuous-Time Systems. In: European Control Conference (ECC), Linz, Austria. 2015 15-7.
[40] Pin, G.; Chen, B.; Parisini, T., Robust deadbeat continuous-time observer design based on modulation integrals, Automatica, 107, 95-102 (2019) · Zbl 1429.93126
[41] Noack M, Botha T, Hamersma HA, Ivanov V, Reger J, Els S. Road profile estimation with modulation function based sensor fusion and series expansion for input reconstruction. In: 2018 IEEE 15th International workshop on Advanced Motion Control (AMC), Tokyo, 9-11 March, 2018. p. 547-52.
[42] Guo, G.; Perruquetti, W.; Efimov, D., Universal robust adaptive control of robot manipulators using real time estimation, IFAC-Papers Online, 51, 499-504 (2015)
[43] Pin G, Li P, Fedele G. Parisini T. A deadbeat observer for two and three-dimensional LTI systems by a time/output-dependent state mapping. In: 20th IFAC world congress, Toulouse, France 2017. 50-1:6452-6457.
[44] Pin G, Li P, Fedele G, Parisini T. A deadbeat observer for LTI systems: a time/output-dependent state mapping. In: 56th IEEE conference on decision and control, Melbourne, Australia. 2017. p. 12-5.
[45] Djennoune, S.; Bettayeb, M.; Al Saggaf, U. M., Modulating function based fast convergent observer and output feedback, IET Control Theory Appl, 13, 16, 2681-2693 (2019)
[46] Filippov AF. Application of the theory of differential equations with discontinuous right hand sides to non-linear problems of automatic control. In: 1st IFAC congress, Butterworths, London. 1961. p. 923-7.
[47] Moreno JA, Osorio M. Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE conference on decision and control Cancun, Mexico. 2008.
[48] Moreno, J. A.; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Trans Automat Control, 57, 4, 1035-1040 (2012) · Zbl 1369.93568
[49] Ghanes M, Barbot JP, Fridman L, Levant A. A novel differentiator: A compromise between super twisting and linear algorithm. In: IEEE conference on decision control, December 12-16 2017, Melbourne, Australia. 2017.
[50] Trujillo A, Gómez-Gutiérrez D, Defoort M, Ruiz-Leon L, Becerra HM. Observer-based leader-follower consensus tracking with fixed-time convergence. In: 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) Mexico City, Mexico. 2020. p. 11-3.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.