×

Edge-forming methods for image zooming. (English) Zbl 1478.94020

Summary: The article is concerned with edge-forming methods to be applied as a post-process for image zooming. Image zooming via standard interpolation methods often produces the so-called checkerboard effect, in particular, when the magnification factor is large. In order to remove the artifact and to form reliable edges, a nonlinear semi-discrete model and its numerical algorithm are suggested along with anisotropic edge-forming numerical schemes. The algorithm is analyzed for stability and choices of parameters. For image zooming by integer factors, a few iterations of the algorithm can form clear and sharp edges for gray-scale images. Various examples are presented to show effectiveness and efficiency of the newly-suggested edge-forming strategy.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
68T45 Machine vision and scene understanding
Full Text: DOI

References:

[1] P.V. Blomgren and T.F. Chan, ”Color TV: Total variation methods for restoration of vector valued images,” IEEE Trans. Image Processing, Vol. 7, pp. 304–309, 1998. · doi:10.1109/83.661180
[2] J. Bramble, J.H. Pasciak, P.H. Sammon, and V. Thomée, ”Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data,” Math. Comp., Vol. 52, pp. 339–367, 1989. · Zbl 0663.65110 · doi:10.1090/S0025-5718-1989-0962207-8
[3] W. Carey, D. Chuang, and S. Hemami, ”Regularity-preserving image interpolation,” IEEE Trans. Image Process, Vol. 8, pp. 1293–1297, 1999. · doi:10.1109/83.784441
[4] Y. Cha and S. Kim, ”Edge-forming methods for color image zooming,” (accepted to IEEE Trans. Image Process).
[5] T. Chan and C. Wong, ”Total variation blind deconvolution,” IEEE Trans. Image Process, Vol. 7, pp. 370–375, 1998. · doi:10.1109/83.661187
[6] T.F. Chan and J. Shen, ”Variational restoration of non-flat image features: Models and algorithms,” SIAM Journal of Applied Mathematics, Vol. 61, pp. 1338–1361, 2000. · Zbl 1011.94001
[7] J. Douglas, Jr., ”On the numerical integration of \(\frac{\partial^2u}{\partial{x^2}} +\frac{\partial^2u}{\partial{y^2}}=\frac{\partial{u}}{\partial{t}}\) by implicit methods,” J. Soc. Indust. Appl. Math., Vol. 3, pp. 42–65, 1955. · Zbl 0067.35802
[8] J. Douglas, Jr., ”On incomplete iteration for implicit parabolic difference equations,” J. Soc. Indust. Appl. Math., Vol. 9, pp. 433–439, 1961. · Zbl 0106.10801 · doi:10.1137/0109036
[9] J. Douglas, Jr., T. Dupont, and R. Ewing, ”Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem,” SIAM J. Numer. Anal., Vol. 16, pp. 503–522, 1979. · Zbl 0411.65064 · doi:10.1137/0716039
[10] J. Douglas, Jr. and J. Gunn, ”A general formulation of alternating direction methods Part I. Parabolic and hyperbolic problems,” Numer. Math., Vol. 6, pp. 428–453, 1964. · Zbl 0141.33103 · doi:10.1007/BF01386093
[11] J. Douglas, Jr. and S. Kim, ”Improved accuracy for locally one-dimensional methods for parabolic equations,” Mathematical Models and Methods in Applied Sciences, Vol. 11, pp. 1563–1579, 2001. · Zbl 1012.65095 · doi:10.1142/S0218202501001471
[12] J. Douglas, Jr. and D. Peaceman, ”Numerical solution of two-dimensional heat flow problems,” American Institute of Chemical Engineering Journal, Vol. 1, pp. 505–512, 1955.
[13] G. Grevera and J. Udupa, ”An objective comparision of 3-D image interpolation methods,” IEEE Trans. Medical Imaging, Vol. 17, pp. 642–652, 1998. · doi:10.1109/42.730408
[14] G. Grevera and J. Udupa, ”A tack-specific evaluation of three-dimensional image interpolation techniques,” IEEE Trans. Medical Imaging, Vol. 18, pp. 137–143, 1999. · doi:10.1109/42.759116
[15] F. Guichard and F. Malgouyres, ”Total variation based interpolation,” in Proceedings of the Ninth European Signal Processing Conference, Patran, Greece, 1998, pp. 1741–1744.
[16] K. Jensen and D. Anastassiou, ”Subpixel edge localization and the interpolation of still images,” IEEE Trans. Image Process, Vol. 4, pp. 285–295, 1995. · doi:10.1109/83.366477
[17] S. Kim, ”PDE-based image restoration: A hybrid model and color image denoising,” (accepted to IEEE Trans. Image Processing).
[18] C. Lee, M. Eden, and M. Unser, ”High-quality image resizing using oblique projection operators,” IEEE Trans. Image Process, Vol. 7, pp. 679–692, 1998. · doi:10.1109/83.668025
[19] T. Lehmann, C. Gönner, and K. Spitzer, ”Survey: Interpolation methods in medical image processing,” IEEE Trans. Medical Imaging, Vol. 8, pp. 1049–1075, 1999. · doi:10.1109/42.816070
[20] X. Li and M. Orchard, ”New edge-directed interpolation,” IEEE Trans. Image Process, Vol. 10, pp. 1521–1527, 2001. · doi:10.1109/83.951537
[21] F. Malgouyres and F. Guichard, ”Edge direction preserving image zooming: A mathematical and numerical analysis,” SIAM J. Numer. Anal., Vol. 39, pp. 1–37, 2001. · Zbl 1001.68174 · doi:10.1137/S0036142999362286
[22] A. Marquina and S. Osher, ”Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal,” SIAM J. Sci. Comput., Vol. 22, pp. 387–405, 2000. · Zbl 0969.65081 · doi:10.1137/S1064827599351751
[23] K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations, 2nd Ed.,” Cambridge University Press, New York, 2005. · Zbl 1126.65077
[24] G. Panci, P. Campisi, S. Colonnese, and G. Scarano, ”Multichannel blind image deconvolution using the Bussgang algorithm: Spatial and multiresolution approaches,” IEEE Trans. Image Process., Vol. 12, pp. 1324–1337, 2003. · Zbl 1279.94026 · doi:10.1109/TIP.2003.818022
[25] D. Peaceman and H. Rachford, ”The numerical solution of parabolic and elliptic differential equations,” J. Soc. Indust. Appl. Math, Vol. 3, pp. 28–41, 1955. · Zbl 0067.35801 · doi:10.1137/0103003
[26] G. Penney, J. Schnabel, D. Rueckert, M. Viergever, and W. Niessen, ”Registration-based interpolation,” IEEE Trans. Medical Imaging, Vol. 23, pp. 922–926, 2004. · doi:10.1109/TMI.2004.828352
[27] M. Razaz and R. Lee, ”Comparison of iterative deconvolution and wiener filtering for image restoration, in image processing: Mathematical Methods and Applications,” Vol. 61 of Inst. Math. Appl. Conf. Ser., Oxford Univ. Press, Oxford, 1997, pp. 145–159. · Zbl 0876.94009
[28] T. Russell, ”Time stepping along characteristics with incomplete iteration for a galerkin approximation of miscible displacement in porous media,” SIAM J. Numer. Anal., Vol. 22, pp. 970–1013, 1885. · Zbl 0594.76087 · doi:10.1137/0722059
[29] G. Sapiro and D. Ringach, ”Anisotropic diffusion of multivalued images with applications to color filtering,” IEEE Trans. Image Processing, Vol. 5, pp. 1582–1586, 1996. · Zbl 0852.68113 · doi:10.1109/83.541429
[30] N. Sochen, R. Kimmel, and R. Malladi, ”A general framework for low level vision,” IEEE Trans. Image Processing, Vol. 7, pp. 310–318, 1998. · Zbl 0973.94502 · doi:10.1109/83.661181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.