×

MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. (English) Zbl 1255.76154

Summary: The magnetohydrodynamic (MHD) flow and heat transfer over a porous shrinking sheet with velocity slip and temperature jump are investigated. A new technique is proposed to avoid the so called “secular” terms and to improve the computation efficiency of the HAM. The closed form expressions are obtained for the two dimensional flow; two branches of solutions are found first. For the non-slip case, we arrive at the convergence results by a third order iterative, which is better than that of a twenty-fifth order iterative in the literature obtained by classical HAM. Moreover, the effects of pertinent parameters on the axisymmetric flow and heat transfer are analyzed and discussed.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Crane, L. J., Flow past a stretching plate, Z. Angew. Math. Phys., 21, 645-647 (1970)
[2] Hayat, T.; Sajid, M., Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. Heat Mass Transfer, 50, 75-84 (2007) · Zbl 1104.80006
[3] Subhas, A. M.; Datti, P. S.; Mahesha, N., Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source, Int. J. Heat Mass Transfer, 52, 2902-2913 (2009) · Zbl 1167.80304
[4] Hayat, T.; Javed, T.; Abbas, Z., MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface, Nonlinear Anal. (RWA), 10, 1514-1526 (2009) · Zbl 1160.76055
[5] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer, 53, 2477-2483 (2010) · Zbl 1190.80017
[6] Wang, C. Y., Liquid film on an unsteady stretching sheet, Quart. Appl. Math., 48, 601-610 (1990) · Zbl 0714.76036
[7] Wang, C. Y., Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech., 43, 377-382 (2008)
[8] Miklavcic, M.; Wang, C. Y., Viscous flow due to a shrinking sheet, Quart. Appl. Math., 64, 283-290 (2006) · Zbl 1169.76018
[9] Fang, T. G.; Liang, W.; Lee, C. F., A new solution branch for the Blasius equation: a shrinking sheet problem, Comput. Math. Appl., 56, 3088-3095 (2008) · Zbl 1165.76324
[10] Fang, T. G., Boundary layer flow over a shrinking sheet with power-law velocity, Int. J. Heat Mass Transfer, 51, 5838-5843 (2008) · Zbl 1157.76010
[11] Fang, T. G.; Zhang, J., Closed-form exact solution of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul., 14, 2853-2857 (2009) · Zbl 1221.76142
[12] Fang, T. G.; Zhang, J., Thermal boundary layers over a shrinking sheet: an analytical solution, Acta Mech., 209, 325-343 (2010) · Zbl 1381.76056
[13] Rahimpour, M.; Mohebpour, S. R.; Kimiaeifar, A.; Bagheri, G. H., On the analytical solution of axisymmetric stagnation flow towards a shrinking sheet, Int. J. Mech., 2, 1-10 (2008)
[14] Ali, F. M.; Nazar, R.; Arifin, N. M.; Pop, I., Unsteady shrinking sheet with mass transfer in a rotating fluid, Internat. J. Numer. Methods Fluids (2010) · Zbl 1419.76686
[15] Merkina, J. H.; Kumaran, V., The unsteady MHD boundary-layer flow on a shrinking sheet, Eur. J. Mech. B Fluids, 29, 357-363 (2010) · Zbl 1196.76086
[16] Javed, T.; Abbas, Z.; Sajid, M.; Ali, N., Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet, Int. J. Heat Mass Transfer, 54, 2034-2042 (2011) · Zbl 1217.80044
[17] Akyildiz, F. T.; Siginer, D. A., Existence results and numerical simulation of magnetohydrodynamic viscous flow over a shrinking sheet with suction, Math. Comput. Modelling, 52, 346-354 (2010) · Zbl 1201.76306
[18] Noor, N. F.M.; Kechil, S. A.; Hashim, I., Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul., 15, 144-148 (2010) · Zbl 1221.76154
[19] Sajid, M.; Hayat, T., The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet, Chaos Solitons Fractals, 39, 1317-1323 (2009) · Zbl 1197.76100
[20] Fernández, F. M., On a perturbation treatment of a model for MHD viscous flow, Appl. Math. Comput., 217, 6, 2307-2310 (2010) · Zbl 1342.76133
[21] Cortell, Rafael, On a certain boundary value problem arising in shrinking sheet flows, Appl. Math. Comput., 217, 4086-4093 (2010) · Zbl 1427.76018
[22] Ali, F. M.D.; Nazar, R.; Arifin, N. M.D., MHD viscous flow and heat transfer induced by a permeable shrinking sheet with prescribed heat flux, WSEAS Trans. Math., 5, 9, 365-375 (2010)
[23] Muhaimin; Kandasamy, Ramasamy; Hashim, Ishak, Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction, Nucl. Eng. Des., 240, 933-939 (2010)
[24] Sparrow, E. M.; Haji-Sheikh, A., Velocity profile and other local quantities in free-molecule tube flow, Phys. Fluids, 7, 1256-1261 (1964) · Zbl 0124.19305
[25] Renksizbulut, M.; Niazmand, H.; Tercan, G., Slip-flow and heat transfer in rectangular microchannels with constant wall temperature, Int. J. Therm. Sci., 45, 870-881 (2006)
[26] Hooman, K., Entropy generation for microscale forced convection: effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation, and duct geometry, Int. Commun. Heat Mass Transfer, 34, 945-957 (2007)
[27] Navier, C. L.M. H., Mémoire sur les lois du mouvement des fluids, Mém. Acad. Roy. Sci. Inst. France, 6, 389-440 (1823)
[28] Maxwell, J. C., On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. R. Soc. London, 170, 231-256 (1879) · JFM 11.0777.01
[29] Matthews, M. T.; Hill, J. M., Nano boundary layer equation with nonlinear Navier boundary condition, J. Math. Anal. Appl., 333, 381-400 (2007) · Zbl 1207.76050
[30] Robert, A.; Gorder, Van; Sweet, Erik; Vajravelu, K., Nano boundary layers over stretching surfaces, Commun. Nonlinear Sci. Numer. Simul., 15, 1494-1500 (2010) · Zbl 1221.76024
[31] Wang, C. Y., Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Anal. (RWA), 10, 375-380 (2009) · Zbl 1154.76330
[32] Zhu, J.; Zheng, L. C.; Zhang, Z. G., Effect of slip condition on MHD stagnation-point flow over a power-law stretching sheet, Appl. Math. Mech., 34, 439-448 (2010) · Zbl 1378.76146
[33] Zheng, L. C.; Liu, Y. Q.; Zhang, X. X., Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. (RWA), 13, 513-523 (2012) · Zbl 1238.76056
[34] Wu, L., A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett., 93, 253103 (2008)
[35] Cheng, J.; Liao, S. J.; Mohapatra, R. N.; Vajravelu, K., Series solutions of nano boundary layer flows by means of the homotopy analysis method, J. Math. Anal. Appl., 343, 233-245 (2008) · Zbl 1135.76016
[36] S.J. Liao, The proposed homotopy analysis technique for the solution of non-linear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.; S.J. Liao, The proposed homotopy analysis technique for the solution of non-linear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[37] Liao, S. J., An approximate solution technique not depending on small parameters: a special example, Int. J. Non-Linear Mech., 303, 371-380 (1995) · Zbl 0837.76073
[38] Liao, S. J., Boundary element method for general non-linear differential operators, Eng. Anal. Bound. Elem., 202, 91-99 (1997)
[39] Liao, S. J., Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton
[40] Liao, S. J.; Cheung, K. F., Homotopy analysis of non-linear progressive waves in deep water, J. Engrg Math., 45, 2, 103-116 (2003) · Zbl 1112.76316
[41] Liao, S. J., On the homotopy analysis method for non-linear problems, Appl. Math. Comput., 47, 2, 499-513 (2004) · Zbl 1086.35005
[42] Yabushita, K.; Yamashita, M.; Tsuboi, K., An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A, 40, 8403-8416 (2007) · Zbl 1331.70041
[43] Marinca, V.; Herisanu, N.; Nemes, I., Optimal homotopy asymptotic method with application to thin film flow, Central Eur. J. Phys., 6, 648-653 (2008)
[44] Marinca, V.; Herisanu, N., Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35, 710-715 (2008)
[45] Marinca, V.; Herisanu, N., An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Appl. Math. Lett., 22, 245-251 (2009) · Zbl 1163.76318
[46] Zhao, N.; Wang, C., A one-step optimal homotopy analysis method for nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 15, 2026-2036 (2010) · Zbl 1222.65091
[47] Liao, S. J., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 15, 2003-2016 (2010) · Zbl 1222.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.