×

Effects of second-order slip and drag reduction in boundary layer flows. (English) Zbl 1515.65204

Summary: In this paper, boundary layer flow over a moving flat plate with second-order velocity slip, injection and applied magnetic field is analyzed. The governing partial differential equations are converted in to a nonlinear ordinary differential equation through an appropriate similarity transformation. The resulting nonlinear equation is solved via homotopy analysis method (HAM). Errors ranging from \(10^{-7}\) to \(10^{-10}\) are reported for a relatively few terms. The effects of the pertinent parameters on the velocity and the shear stress are presented graphically and discussed. In the absence of magnetic field and the two slip parameters, the results are found to be in excellent agreement with the available results in the literature. It is expected that the results obtained will not only provide useful information for industrial applications but also complement the earlier works.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
Full Text: DOI

References:

[1] B.C. Sakiadis, 1. (1961), Boundary layer behaviour on continuous solid surface. I: The boundary layer equation for two dimensional and asymmetric flow, AIChE J. 7, 26-28.; Sakiadis, B. C., Boundary layer behaviour on continuous solid surface, I: The boundary layer equation for two dimensional and asymmetric flow, AIChE J., 7, 26-28 (1961)
[2] B.C. Sakiadis, 2. (1961), Boundary layer behaviour on continuous solid surface. II: The boundary layer on a continuous flat surface, AIChE J. 7, 221-225.; Sakiadis, B. C., Boundary layer behaviour on continuous solid surface, II: The boundary layer on a continuous flat surface, AIChE J., 7, 221-225 (1961)
[3] H. Blasius, 3. (1908), Grenzschichten in Flüssigkeiten Mit Kleiner Reibung, Zeitschrift für Mathematik und Physik, 56, 1-37.; Blasius, H., Grenzschichten in Flüssigkeiten Mit Kleiner Reibung, Zeitschrift für Mathematik und Physik, 56, 1-37 (1908) · JFM 39.0803.02
[4] F.K. Tsou, E. M. Sparrow, J. R. Goldstein, 4. (1967), Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface, International Journal of Heat and Mass Transfer 10, 219-235.; Tsou, F. K.; Sparrow, E. M.; Goldstein, J. R., Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface, International Journal of Heat and Mass Transfer, 10, 219-235 (1967)
[5] K. Vajravelu and R.N. Mohapatra, 5. (1990), On fluid dynamic drag reduction in some boundary layer flows, Acta Mech. 81, 58-68.; Vajravelu, K.; and, R.; Mohapatra, N., On fluid dynamic drag reduction in some boundary layer flows, Acta Mech., 81, 58-68 (1990) · Zbl 0698.76045
[6] H.S. Takhar, S. Nitu, I. Pop, 6. (1991), Boundary layer flow due to a moving plate: variable fluid properties, Acta Mechanica 90, 37-42.; Takhar, H. S.; Nitu, S.; Pop, I., Boundary layer flow due to a moving plate: variable fluid properties, Acta Mechanica, 90, 37-42 (1991) · Zbl 0753.76149
[7] H. I. Andersson, J.B. Aarseth, 7. (2007), Sakiadis flow with variable fluid properties revisited, International Journal of Engineering Science, 45, 554-561.; Andersson, H. I.; Aarseth, J. B., Sakiadis flow with variable fluid properties revisited, International Journal of Engineering Science, 45, 554-561 (2007) · Zbl 1213.76062
[8] S. Ahmad, A.M. Rohni, I. Pop, 8. (2011), Blasius and Sakiadis problems in nanofluids, Acta Mechanica 218, 195-204.; Ahmad, S.; Rohni, A. M.; Pop, I., Blasius and Sakiadis problems in nanofluids, Acta Mechanica, 218, 195-204 (2011) · Zbl 1335.82034
[9] D. Xu, X. Guo, 9. (2013), Application of fixed point method to obtain semi-analytical solution to Blasius flow and its variation, Applied Mathematics and Computation 224, 791-802.; Xu, D.; Guo, X., Application of fixed point method to obtain semi-analytical solution to Blasius flow and its variation, Applied Mathematics and Computation, 224, 791-802 (2013) · Zbl 1334.76051
[10] K. Vajravelu, K. V. Prasad, H. Vaidya,; Vajravelu, K.; Prasad, K. V.; Vaidya, H., Influence of Hall Current on MHD Flow and Heat Transfer over a slender stretching sheet in the presence of variable fluid properties, Communications in Numerical Analysis, 2016, 17-36 (2016) · Zbl 1378.76140
[11] K. V. Prasad, H. Vaidya, K. Vajravelu, M.M. Rashidi, 11. (2016), Effects of Variable Fluid Properties on MHD Flow and Heat Transfer over a Stretching Sheet with Variable Thickness, Journal of Mechanics, 1-12.; Prasad, K. V.; Vaidya, H.; Vajravelu, K.; Rashidi, M. M., Effects of Variable Fluid Properties on MHD Flow and Heat Transfer over a Stretching Sheet with Variable Thickness, Journal of Mechanics, 1-12 (2016)
[12] K. V. Prasad, K. Vajravelu, H. Vaidya, 12. (2016), Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness, International Journal for Computational Methods in Engineering Science and Mechanics 17, 288-297.; Prasad, K. V.; Vajravelu, K.; Vaidya, H., Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness, International Journal for Computational Methods in Engineering Science and Mechanics, 17, 288-297 (2016) · Zbl 1378.76140
[13] K.V. Prasad, K. Vajravelu, H. Vaidya, 13. (2016), MHD Casson Nanofluid Flow and Heat Transfer at a Stretching Sheet with Variable Thickness, Journal of Nanofluids 5, 423-435.; Prasad, K. V.; Vajravelu, K.; Vaidya, H., MHD Casson Nanofluid Flow and Heat Transfer at a Stretching Sheet with Variable Thickness, Journal of Nanofluids, 5, 423-435 (2016) · Zbl 1378.76140
[14] G.S. Beavers, D.D. Joseph, 14. (1967), Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30, 197-207.; Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall J, Fluid Mech., 30, 197-207 (1967)
[15] H. I. Andersson, 15. (2002), Slip flow past a stretching surface, Acta Mechanica 158, 121-125.; Andersson, H. I., Slip flow past a stretching surface, Acta Mechanica, 158, 121-125 (2002) · Zbl 1013.76020
[16] C.Y. Wang, 16. (2002), Flow due to a stretching boundary with partial slip - an exact solution of the Navier-Stokes equations, Chemical Engineering Science 57, 3745-3747.; Wang, C. Y., Flow due to a stretching boundary with partial slip - an exact solution of the Navier-Stokes equations, Chemical Engineering Science, 57, 3745-3747 (2002)
[17] T. Fang, J. Zhang, S. Yao, 17. (2009), Slip MHD viscous flow over a stretching sheet - an exact solution, Commun. Nonlinear Sci. Numer. Simul. 14, 3731-3737.; Fang, T.; Zhang, J.; Yao, S., Slip MHD viscous flow over a stretching sheet - an exact solution, Commun, Nonlinear Sci. Numer. Simul., 14, 3731-3737 (2009)
[18] M. Sajid, N. Ali, Z. Abbas, T. Javed, 18. (2010), Stretching flows with general slip boundary condition, Int. J. Mod. Phys. B 24, 5939-5947.; Sajid, M.; Ali, N.; Abbas, Z.; Javed, T., Stretching flows with general slip boundary condition, Int, J. Mod. Phys. B, 24, 5939-5947 (2010) · Zbl 1454.76034
[19] M.T. Matthews, J.M. Hill, 19. (2008), A note on the boundary layer equations with linear partial slip boundary condition, Appl. Math. Lett. 21, 810-813.; Matthews, M. T.; Hill, J. M., A note on the boundary layer equations with linear partial slip boundary condition, Appl.Math. Lett., 21, 810-813 (2008) · Zbl 1148.76019
[20] T. Hayat, T. Javed, Z. Abbas, 20. (2008), Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space, Int. J. Heat Mass Transfer 51, 4528-4534.; Hayat, T.; Javed, T.; Abbas, Z., Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space, Int, J. Heat Mass Transfer, 51, 4528-4534 (2008) · Zbl 1144.80316
[21] M.H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, 21. (2011), Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction, Int. J. Heat Mass Transfer 54, 3214-3225.; Yazdi, M. H.; Abdullah, S.; Hashim, I.; Sopian, K., Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction, Int, J. Heat Mass Transfer, 54, 3214-3225 (2011) · Zbl 1219.80098
[22] B. Sahoo, 22. (2010), Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip, Commun. Nonlinear Sci. Numer. Simul. 15, 602-615.; Sahoo, B., Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip, Commun, Nonlinear Sci. Numer. Simul., 15, 602-615 (2010) · Zbl 1221.76021
[23] J. Zhu, L. Zheng, L. Zheng, X. Zhang, 23. (2015), Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction, Applied Mathematics and Mechanics 36, 1131-1146.; Zhu, J.; Zheng, L.; Zheng, L.; Zhang, X., Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction, Applied Mathematics and Mechanics, 36, 1131-1146 (2015) · Zbl 1322.76025
[24] S.Mansur, A. Ishak, I. Pop, 24. (2014), Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions, Applied Mathematics and Mechanics 35, 1401-14; Mansur, S.; Ishak, A.; Pop, I., Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions, Applied Mathematics and Mechanics, 35, 1401-1410 (2014) · Zbl 1442.80002
[25] J. Zhu, S. Wang, L. Zheng, X. Zhang, 25. (2017), Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity, Applied Mathematics and Mechanics 38, 125-136.; Zhu, J.; Wang, S.; Zheng, L.; Zhang, X., Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity, Applied Mathematics and Mechanics, 38, 125-136 (2017)
[26] B. Sahoo, 26. (2010), Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet, Applied Mathematics and Mechanics 31, 159-173.; Sahoo, B., Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet, Applied Mathematics and Mechanics, 31, 159-173 (2010) · Zbl 1397.76182
[27] T. Hayat, M. Imtiaz, A. Alsaedi. 27. (2015), Partial slip effects in flow over nonlinear stretching surface, Applied Mathematics and Mechanics 36, 1513-1526.; Hayat, T.; Imtiaz, M.; Alsaedi, A., Partial slip effects in flow over nonlinear stretching surface, Applied Mathematics and Mechanics, 36, 1513-1526 (2015) · Zbl 1397.76182
[28] J.C. Maxwell, 28. (1879), On stresses in rarefied gases arising from inequalities of temperature, Philos. Trans. Royal Soc. 170, 231-256.; Maxwell, J. C., On stresses in rarefied gases arising from inequalities of temperature, Philos. Trans. Royal Soc., 170, 231-256 (1879) · JFM 11.0777.01
[29] A. Beskok, G.E. Karniadakis, 29. (1999), A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys Eng 3, 43-77.; Beskok, A.; Karniadakis, G. E., A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys Eng, 3, 43-77 (1999) · Zbl 0998.76002
[30] L. Wu, 30. (2008), A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett. 93, 253103.; Wu, L., A slip model for rarefied gas flows at arbitrary Knudsen number, Appl.Phys. Lett., 3, 253103 (2008)
[31] T. Fang, S. Yao, J. Zhang, A. Aziz, 31. (2010), Viscous flow over a shrinking sheet with a second order slip flow model, Commun. Nonlinear Sci. Numer. Simul. 15, 1831-1842.; Fang, T.; Yao, S.; Zhang, J.; Aziz, A., Viscous flow over a shrinking sheet with a second order slip flow model, Commun, Nonlinear Sci. Numer. Simul., 15, 1831-1842 (2010) · Zbl 1222.76028
[32] S.J. Liao, 32. (1992), The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis. Shanghai Jiao Tong University Shanghai, China.; Liao, S. J., PhD thesis. (1992)
[33] R. A. Van Gorder, K. Vajravelu, 33. (2008), Analytic and numerical solutions to the Lane-Emden equation, Phys. Lett. A. 372, 6060 - 6065.; Van Gorder, R. A.; Vajravelu, K., Analytic and numerical solutions to the Lane-Emden equation, Phys. Lett. A., 72, 6060-6065 (2008) · Zbl 1223.85004
[34] R. Li, R. A. Van Gorder, K. Mallory, K. Vajravelu, 34. (2014), Solution method for the transformed time-dependent Michaelis-Menten enzymatic reaction model, J. Math. Chem. 52, 2494-2506.; Li, R.; Van Gorder, R. A.; Mallory, K.; Vajravelu, K., Solution method for the transformed time-dependent Michaelis-Menten enzymatic reaction model J, Math. Chem., 52, 2494-2506 (2014) · Zbl 1331.92061
[35] K. Mallory and R. A. Van Gorder, 35, (2014), Optimal homotopy analysis and control of error for solutions to the non-local Witham equation, Numer. Algorithms. 66, 843-863.; Mallory, K.; Van Gorder, R. A., Optimal homotopy analysis and control of error for solutions to the non-local Witham equation, Numer. Algorithms., 66, 843-863 (2014) · Zbl 1299.76025
[36] K. Mallory and R. A. Van Gorder, 36. (2013), Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation, Numer. Algorithms. 64, 633-657.; Mallory, K.; Van Gorder, R. A., Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation, Numer. Algorithms., 64, 633-657 (2013) · Zbl 1283.65090
[37] S.J. Liao, 37. (2003), Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press.; Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method, Boca Raton: Chapman and Hall/CRC Press. (2003) · Zbl 1051.76001
[38] K. Yabushita, M. Yamashita, K. Tsuboi, 38. (2007), An analytic solution of projection motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A: Math. Theor. 40, 8403 - 8416.; Yabushita, K.; Yamashita, M.; Tsuboi, K., An analytic solution of projection motion with the quadratic resistance law using the homotopy analysis method J. Phys, A: Math. Theor., 40, 8403-8416 (2007) · Zbl 1331.70041
[39] S.J. Liao, 39. (1999), An explicit, totally analytic approximate solution for Blasius’ viscous flow problems, Int. J. Nonlinear Mech. 34, 759-778.; Liao, S. J., An explicit, totally analytic approximate solution for Blasius’ viscous flow problems, Int. J. Nonlinear Mech., 34, 759-778 (1999) · Zbl 1342.74180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.