×

Reliable control of a class of switched cascade nonlinear systems with its application to flight control. (English) Zbl 1291.93246

Summary: This paper considers the reliable control problem of a class of uncertain switched cascade nonlinear systems. A new state-feedback control method is proposed for global stabilization of the nonlinear switched systems against actuator faults with the existence of structural uncertainties. Compared with the existing results of switched systems, this paper mainly features on: (1) the proposed controller can stabilize a class of nonlinear systems with actuator faults and its nominal systems (i.e., without actuator faults) without necessarily changing any structures and/or parameters of the proposed controllers; (2) the proposed method treats all actuators in a unified way without necessarily classifying all actuators into faulty actuators and healthy ones; (3) the proposed method is independent of arbitrary switching policies. The simulation studies on a numerical example and on longitudinal dynamics of an F-18 aircraft operating on different heights show and further validate the effectiveness of the proposed method.

MSC:

93D15 Stabilization of systems by feedback
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C95 Application models in control theory
34H05 Control problems involving ordinary differential equations
Full Text: DOI

References:

[1] Zhang, L. X.; Gao, H. J., Asynchronously switched control of switched linear systems with average dwell time, Automatica, 46, 953-958 (2010) · Zbl 1191.93068
[2] Zhao, J.; Hill, D. J., Dissipativity theory for switched systems, IEEE Transactions on Automatic Control, 36, 11, 1228-1240 (2008)
[3] Zhao, J.; Dimirovsk, G. M., Quadratic stability of a class of switched nonlinear systems, IEEE Transactions on Automatic Control, 49, 574-578 (2004) · Zbl 1365.93382
[4] Sun, Z. D.; Ge, S. S., Switched Linear Systems-Control and Design (2004), Springer-Verlag: Springer-Verlag New York
[5] Xie, G. M.; Wang, L., Controllability and stabilizability of switched linear systems, Systems & Control Letters, 48, 135-155 (2003) · Zbl 1134.93403
[6] Wang, R.; Jin, G.; Zhao, J., Robust fault-tolerant control for a class of switched nonlinear systems in lower triangular form, Asian Journal of Control, 9, 1, 68-72 (2007)
[7] Yurtseven, E.; Heemels, W. P.M. H.; Camlibel, M. K., Disturbance decoupling of switched linear systems, Systems & Control Letters, 61, 69-78 (2012) · Zbl 1250.93080
[8] Yang, G. H.; Che, W. W., Non-fragile \(H\)-infinity filter design for linear continuous-time systems, Automatica, 44, 11, 2849-2856 (2008) · Zbl 1152.93365
[9] Yang, H.; Jiang, B.; Cocquempot, V.; Zhang, H. G., Stabilization of switched nonlinear systems with all unstable modes: applications to multi-agent systems, IEEE Transactions on Automatic Control, 56, 9, 2230-2235 (2011) · Zbl 1368.93580
[10] Yang, H.; Jiang, B.; Staroswiecki, M., Observer-based fault-tolerant control for a class of switched nonlinear systems, IET Control Theory & Applications, 1, 5, 1523-1532 (2007)
[11] Zhang, L. X.; Gao, H.; Kaynak, O., Network-induced constraints in networked control system—a survey, IEEE Transactions on Industrial Informatics, 9, 1, 403-416 (2013)
[12] Persis, C. D.; Santis, R. D.; Morse, A. S., Switched nonlinear systems with state-dependent dwell-time, Systems & Control Letters, 50, 291-302 (2003) · Zbl 1157.93510
[14] El-Farra, N. H.; Mhaskar, P.; Christofides, P. D., Output feedback control of switched nonlinear systems using multiple Lyapunov functions, Systems & Control Letters, 54, 12, 1163-1182 (2005) · Zbl 1129.93497
[15] Mareczek, J.; Buss, M.; Spong, M. W., Invariance control for a class of cascade nonlinear systems, IEEE Transactions on Automatic Control, 47, 636-640 (2000) · Zbl 1364.93053
[17] Han, T. T.; Ge, S. S.; Lee, T. H., Adaptive neural control for a class of switched nonlinear systems, Systems & Control Letters, 58, 109-118 (2009) · Zbl 1155.93414
[18] Long, L. J.; Zhao, J., Global stabilization for a class of switched nonlinear feedforward systems, Systems & Control Letters, 60, 734-738 (2011) · Zbl 1226.93114
[20] Veillette, R. J.; Medanic, J. V.; Perkins, W. R., Design of reliable control systems, IEEE Transactions on Automatic Control, 37, 3, 290-304 (1992) · Zbl 0745.93025
[21] Shimemura, E.; Fujita, M., A design method for linear state feedback systems possessing integrity based on a solution of a Riccati-type equation, International Journal of Control, 42, 4, 887-899 (1985) · Zbl 0569.93028
[22] Zhang, Y. M.; Jiang, J., Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control, 32, 229-252 (2008)
[23] Zhang, Y. M.; Jiang, J., Fault tolerant control system design with explicit consideration of performance degradation, IEEE Transactions on Aerospace and Electronic Systems, 39, 3, 838-848 (2003)
[24] Yang, H.; Jiang, B.; Cocquempot, V., Fault Tolerant Control Design for Hybrid Systems (2010), Springer-Verlag
[25] Panagi, P.; Polycarpou, M. M., Decentralized fault tolerant control of a class of interconnected nonlinear systems, IEEE Transactions on Automatic Control, 56, 178-184 (2011) · Zbl 1368.93310
[26] Veillette, J. R., Reliable linear-quadratic state-feedback control, Automatica, 31, 137-143 (1995) · Zbl 0825.93249
[27] Wang, Z. D.; Huang, B.; Unbehauen, H., Robust reliable control for a class of uncertain nonlinear state-delayed systems, Automatica, 35, 955-963 (1999) · Zbl 0945.93605
[28] Liang, Y. W.; Liaw, D. C.; Lee, T. C., Reliable control of nonlinear systems, IEEE Transactions on Automatic Control, 45, 706-710 (2000) · Zbl 0969.49018
[29] Han, Q. L.; Yu, J. S., A new feedback design method for uncertain continuous-time systems possessing integrity, Acta Automatica Sinica, 24, 768-775 (1998) · Zbl 1498.93236
[30] Jiang, B.; Staroswiecki, M.; Cocquempot, V., Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control, 51, 9, 1578-1583 (2006) · Zbl 1366.93694
[31] Niederlinski, A., A heuristic approach to the design of linear multivariable interacting control systems, Automatica, 7, 6, 691-701 (1971) · Zbl 0225.93008
[32] Siljak, D. D., Reliable control using multiple control systems, International Journal of Control, 31, 2, 303-329 (1980) · Zbl 0428.93033
[33] Vidyasagar, M.; Viswanadham, N., Reliable stabilization using a multi-controller configuration, Automatica, 21, 4, 599-602 (1985)
[35] Gundes, A. N., Stability of feedback systems with sensor or actuator failures: analysis, International Journal of Control, 56, 4, 735-753 (1992) · Zbl 0760.93065
[36] Zhang, L. X.; Cui, N. G.; Liu, M.; Zhao, Y., Asynchronous filtering of discrete-time switched linear systems with average dwell time, IEEE Transactions on Circuits and Systems-I, 58, 5, 1109-1118 (2011) · Zbl 1468.93072
[37] Zhang, L. X.; Shi, P., Stability, \(l_2\) gain and asynchronous \(H_\infty\) control of discrete-time switched systems with average dwell time, IEEE Transactions on Automatic Control, 54, 9, 2193-2200 (2009)
[38] Zhang, L. X.; Lam, J., Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions, IEEE Transactions on Automatic Control, 55, 7, 1695-1701 (2010) · Zbl 1368.93782
[40] Yang, H.; Jiang, B.; Cocquempot, V., A fault tolerant control framework for periodic switched non-linear systems, International Journal of Control, 82, 117-129 (2009) · Zbl 1154.93372
[41] Jafarov, E.; Tasaltin, R., Robust sliding-mode control for the uncertain MIMO aircraft model F-18, IEEE Transactions on Aerospace and Electronic Systems, 36, 4, 1127-1141 (2000)
[42] Annaswamy, A. M.; Lavretsky, E.; Dydek, Z. T.; Gibson, T. E.; Matsutani, M., Recent results in robust adaptive flight control systems, International Journal of Adaptive Control and Signal Processing, 27, 4-21 (2013) · Zbl 1273.93048
[43] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.