×

On Newman and Littlewood polynomials with a prescribed number of zeros inside the unit disk. (English) Zbl 1461.11141

A pair \((k,n)\) \(\in \mathbb{N}^{2},\) where \(1\leq k\leq n-1,\) is said to be Newman (resp. Littlewood)-admissible, if there is a \(\{0,1\}\) (resp. a \( \{-1,1\})\)-polynomial of degree \(n,\) having \(k\) zeros with modulus less than \(1,\) and no zero of modulus \(1.\)
Certain classes of Newman (resp. Littlewood)-admissible pairs have been determined in [K. Mukunda, J. Number Theory 117, No. 1, 106–121 (2006; Zbl 1095.11049); Can. Math. Bull. 53, No. 1, 140–152 (2010; Zbl 1227.11110); P. Borwein et al., Can. J. Math. 67, No. 3, 507–526 (2015; Zbl 1320.11097)], and the authors of the paper under review continue to investigate others sets of these pairs. Mainly, they show that any \((k,n)\) with \(n\geq 7\) and \(3\leq k\leq n-3\) is Newman-admissible. On the way to this goal, they answer a question of D. W. Boyd from [Lond. Math. Soc. Lect. Note Ser. 109, 159–170 (1986; Zbl 0593.12001)] about the smallest degree \(\{0,1\}\)-polynomial having a modulus greater than \(2\) on the unit circle. Also, they identify all pairs \((k,n)\) which are Newman-admissible for \(n\leq 35,\) and conjecture that \((2,n)\) is not Newman-admissible if and only if \(n\equiv 1,7,15,21,25,27\bmod 30\) and \( n\geq 21.\) Similar, but less complete results for Littlewood-admissible pairs are established.

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11R09 Polynomials (irreducibility, etc.)
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
11C08 Polynomials in number theory
11B83 Special sequences and polynomials
65H04 Numerical computation of roots of polynomial equations

Citations:

Zbl 0593.12001

References:

[1] Amoroso, Francesco, Polynomials with prescribed vanishing at roots of unity, Boll. Un. Mat. Ital. B (7), 9, 4, 1021-1042 (1995) · Zbl 0855.11010
[2] Amoroso, F.; Mignotte, M., On the distribution of the roots of polynomials, Ann. Inst. Fourier (Grenoble), 46, 5, 1275-1291 (1996) · Zbl 0867.26009
[3] BBMST P Balister, B. Bollob\'as, R. Morris, J. Sahasrabudhe, and M. Tiba Flat Littlewood polynomials exist, arXiv preprint: 1907.09464 · Zbl 1470.42004
[4] Beaucoup, Frank; Borwein, Peter; Boyd, David W.; Pinner, Christopher, Multiple roots of \([-1,1]\) power series, J. London Math. Soc. (2), 57, 1, 135-147 (1998) · Zbl 0922.30004 · doi:10.1112/S0024610798005857
[5] Beaucoup, Franck; Borwein, Peter; Boyd, David W.; Pinner, Christopher, Power series with restricted coefficients and a root on a given ray, Math. Comp., 67, 222, 715-736 (1998) · Zbl 0889.30006 · doi:10.1090/S0025-5718-98-00960-0
[6] Bertin, M.-J.; Decomps-Guilloux, A.; Grandet-Hugot, M.; Pathiaux-Delefosse, M.; Schreiber, J.-P., Pisot and Salem Numbers, xiv+291 pp. (1992), Birkh\"{a}user Verlag, Basel · Zbl 0772.11041 · doi:10.1007/978-3-0348-8632-1
[7] Bistritz, Yuval, Zero location of polynomials with respect to the unit-circle unhampered by nonessential singularities, IEEE Trans. Circuits Systems I Fund. Theory Appl., 49, 3, 305-314 (2002) · Zbl 1368.30003 · doi:10.1109/81.989164
[8] BLS Z. Blumenstein, A. Lamarche, and S. Saunders, Complex Pisot Numbers and Newman Representatives (2014), Summer@ IRCM presentation slides, retrieved at https://icerm.brown.edu/materials/Slides/sw-14-1/Group_Presentation-_Complex_Pisot_numbers_and_Newman_multiples_]_Zachary_Blumenstein,_Alicia_Lamarche,_and_Spencer_Saunders.pdf.
[9] Borwein, Peter, Computational Excursions in Analysis and Number Theory, CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC 10, x+220 pp. (2002), Springer-Verlag, New York · Zbl 1020.12001 · doi:10.1007/978-0-387-21652-2
[10] Borwein, Peter; Choi, Kwok-Kwong Stephen; Jedwab, Jonathan, Binary sequences with merit factor greater than 6.34, IEEE Trans. Inform. Theory, 50, 12, 3234-3249 (2004) · Zbl 1267.94024 · doi:10.1109/TIT.2004.838341
[11] Borwein, Peter; Choi, Stephen; Ferguson, Ron; Jankauskas, Jonas, On Littlewood polynomials with prescribed number of zeros inside the unit disk, Canad. J. Math., 67, 3, 507-526 (2015) · Zbl 1320.11097 · doi:10.4153/CJM-2014-007-1
[12] Borwein, Peter; Dobrowolski, Edward; Mossinghoff, Michael J., Lehmer’s problem for polynomials with odd coefficients, Ann. of Math. (2), 166, 2, 347-366 (2007) · Zbl 1172.11034 · doi:10.4007/annals.2007.166.347
[13] Borwein, Peter; Erd\'{e}lyi, Tam\'{a}s, On the zeros of polynomials with restricted coefficients, Illinois J. Math., 41, 4, 667-675 (1997) · Zbl 0906.30005
[14] Borwein, Peter; Erd\'{e}lyi, Tam\'{a}s, Lower bounds for the number of zeros of cosine polynomials in the period: a problem of Littlewood, Acta Arith., 128, 4, 377-384 (2007) · Zbl 1124.41009 · doi:10.4064/aa128-4-5
[15] Borwein, P.; Erd\'{e}lyi, T.; Ferguson, R.; Lockhart, R., On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. of Math. (2), 167, 3, 1109-1117 (2008) · Zbl 1186.11045 · doi:10.4007/annals.2008.167.1109
[16] Borwein, Peter; Erd\'{e}lyi, Tam\'{a}s; K\'{o}s, G\'{e}za, Littlewood-type problems on \([0,1]\), Proc. London Math. Soc. (3), 79, 1, 22-46 (1999) · Zbl 1039.11046 · doi:10.1112/S0024611599011831
[17] Borwein, Peter; Erd\'{e}lyi, Tam\'{a}s; Littmann, Friedrich, Polynomials with coefficients from a finite set, Trans. Amer. Math. Soc., 360, 10, 5145-5154 (2008) · Zbl 1158.30002 · doi:10.1090/S0002-9947-08-04605-9
[18] Borwein, Peter; Mossinghoff, Michael J., Polynomials with height 1 and prescribed vanishing at 1, Experiment. Math., 9, 3, 425-433 (2000) · Zbl 0999.12001
[19] Borwein, Peter; Mossinghoff, Michael, Rudin-Shapiro-like polynomials in \(L_4\), Math. Comp., 69, 231, 1157-1166 (2000) · Zbl 1042.11046 · doi:10.1090/S0025-5718-00-01221-7
[20] Borwein, Peter; Hare, Kevin G.; Mossinghoff, Michael J., The Mahler measure of polynomials with odd coefficients, Bull. London Math. Soc., 36, 3, 332-338 (2004) · Zbl 1143.11349 · doi:10.1112/S002460930300287X
[21] Borwein, Peter; Pinner, Christopher, Polynomials with \(\{0,+1,-1\}\) coefficients and a root close to a given point, Canad. J. Math., 49, 5, 887-915 (1997) · Zbl 0901.11022 · doi:10.4153/CJM-1997-047-3
[22] Boyd, David W., Small Salem numbers, Duke Math. J., 44, 2, 315-328 (1977) · Zbl 0353.12003
[23] Boyd, David W., Pisot numbers in the neighbourhood of a limit point. I, J. Number Theory, 21, 1, 17-43 (1985) · Zbl 0575.12001 · doi:10.1016/0022-314X(85)90010-1
[24] Boyd, David W., Large Newman polynomials. Diophantine analysis, Kensington, 1985, London Math. Soc. Lecture Note Ser. 109, 159-170 (1986), Cambridge Univ. Press, Cambridge · Zbl 0593.12001
[25] Boyd, David W., On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comp., 66, 220, 1697-1703 (1997) · Zbl 0893.12004 · doi:10.1090/S0025-5718-97-00892-2
[26] Boyd, David W., On a problem of Byrnes concerning polynomials with restricted coefficients. II, Math. Comp., 71, 239, 1205-1217 (2002) · Zbl 1003.11006 · doi:10.1090/S0025-5718-01-01360-6
[27] Bloch, A.; P\'{o}lya, G., On the Roots of Certain Algebraic Equations, Proc. London Math. Soc. (2), 33, 2, 102-114 (1931) · JFM 57.0128.03 · doi:10.1112/plms/s2-33.1.102
[28] Chamfy, Christiane, Valeur minima du module pour un ensemble ferm\'{e} d’indices alg\'{e}briques, C. R. Acad. Sci. Paris, 244, 1992-1994 (1957) · Zbl 0078.03203
[29] Chamfy, Christiane, Fonctions m\'{e}romorphes dans le cercle-unit\'{e} et leurs s\'{e}ries de Taylor, Ann. Inst. Fourier (Grenoble), 8, 211-262 (1958) · Zbl 0087.07603
[30] Campbell, Douglas M.; Ferguson, Helaman R. P.; Forcade, Rodney W., Newman polynomials on \(z=1\), Indiana Univ. Math. J., 32, 4, 517-525 (1983) · Zbl 0548.30002 · doi:10.1512/iumj.1983.32.32037
[31] Cantor, David G., On sets of algebraic integers whose remaining conjugates lie in the unit circle, Trans. Amer. Math. Soc., 105, 391-406 (1962) · Zbl 0135.09002 · doi:10.2307/1993727
[32] Carroll, F. W.; Eustice, Dan; Figiel, T., The minimum modulus of polynomials with coefficients of modulus one, J. London Math. Soc. (2), 16, 1, 76-82 (1977) · Zbl 0365.30001 · doi:10.1112/jlms/s2-16.1.76
[33] Conrey, B.; Granville, A.; Poonen, B.; Soundararajan, K., Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble), 50, 3, 865-889 (2000) · Zbl 1007.11053
[34] Drungilas, Paulius, Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc., 45, 3, 835-840 (2008) · Zbl 1180.11034 · doi:10.4134/JKMS.2008.45.3.835
[35] Dubickas, A., On the order of vanishing at 1 of a polynomial, Liet. Mat. Rink.. Lithuanian Math. J., 39 39, 4, 365-370 (1999) · Zbl 0963.12001 · doi:10.1007/BF02465586
[36] Dubickas, Art\={u}ras, Polynomials with multiple roots at 1, Int. J. Number Theory, 10, 2, 391-400 (2014) · Zbl 1307.11033 · doi:10.1142/S1793042113501005
[37] Dub3 A. Dubickas, On Newman polynomials without roots on the unit circle, Chebyshevskii Sbornik, 20 (1) (2019), 195-201.
[38] Dubickas, Art\={u}ras; Jankauskas, Jonas, On Newman polynomials which divide no Littlewood polynomial, Math. Comp., 78, 265, 327-344 (2009) · Zbl 1208.11123 · doi:10.1090/S0025-5718-08-02138-8
[39] Drungilas, P.; Jankauskas, J.; Siurys, J., On Littlewood and Newman polynomial multiples of Borwein polynomials, Math. Comp., 87, 311, 1523-1541 (2018) · Zbl 1390.11122 · doi:10.1090/mcom/3258
[40] Drungilas, Paulius; Jankauskas, Jonas; Junevi\v{c}ius, Grintas; Klebonas, Lukas; Siurys, Jonas, On certain multiples of Littlewood and Newman polynomials, Bull. Korean Math. Soc., 55, 5, 1491-1501 (2018) · Zbl 1444.11044 · doi:10.4134/BKMS.b170854
[41] Dufresnoy, J.; Pisot, Ch., Sur les d\'{e}riv\'{e}s successifs d’un ensemble ferm\'{e} d’entiers alg\'{e}briques, Bull. Sci. Math. (2), 77, 129-136 (1953) · Zbl 0051.28203
[42] Dufresnoy, J.; Pisot, Ch., Etude de certaines fonctions m\'{e}romorphes born\'{e}es sur le cercle unit\'{e}. Application \`a un ensemble ferm\'{e} d’entiers alg\'{e}briques, Ann. Sci. Ecole Norm. Sup. (3), 72, 69-92 (1955) · Zbl 0064.03703
[43] Erd\'{e}lyi, Tam\'{a}s, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J., 49, 1, 97-111 (2001) · Zbl 0998.30006 · doi:10.1307/mmj/1008719037
[44] Erd\'{e}lyi, Tam\'{a}s, Extensions of the Bloch-P\'{o}lya theorem on the number of real zeros of polynomials, J. Th\'{e}or. Nombres Bordeaux, 20, 2, 281-287 (2008) · Zbl 1163.11022
[45] Erd\'{e}lyi, Tam\'{a}s, An improvement of the Erd\H{o}s-Tur\'{a}n theorem on the distribution of zeros of polynomials, C. R. Math. Acad. Sci. Paris, 346, 5-6, 267-270 (2008) · Zbl 1156.30006 · doi:10.1016/j.crma.2008.01.020
[46] Erd\'{e}lyi, Tam\'{a}s, The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set, Acta Arith., 176, 2, 177-200 (2016) · Zbl 1402.11044 · doi:10.4064/aa8442-7-2016
[47] Erd\'{e}lyi, Tam\'{a}s, Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set, Acta Arith., 192, 2, 189-210 (2020) · Zbl 1464.12003 · doi:10.4064/aa190204-27-5
[48] Erd6 T. Erd\'elyi, Recent progress in the study of polynomials with constrained coefficients, a preprint (2019).
[49] Erd\"{o}s, Paul; Offord, A. C., On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3), 6, 139-160 (1956) · Zbl 0070.01702 · doi:10.1112/plms/s3-6.1.139
[50] Erd\"{o}s, P.; Tur\'{a}n, P., On the distribution of roots of polynomials, Ann. of Math. (2), 51, 105-119 (1950) · Zbl 0036.01501 · doi:10.2307/1969500
[51] Este T. Estermann, Complex Numbers and Functions, Athlone Press, Univ. of London. (1962), p. 156. · Zbl 0115.06006
[52] Filaseta, M.; Ford, K.; Konyagin, S., On an irreducibility theorem of A. Schinzel associated with coverings of the integers, Illinois J. Math., 44, 3, 633-643 (2000) · Zbl 0966.11046
[53] Filaseta, Michael; Matthews, Manton, Jr., On the irreducibility of \(0,1\)-polynomials of the form \(f(x)x^n+g(x)\), Colloq. Math., 99, 1, 1-5 (2004) · Zbl 1060.11066 · doi:10.4064/cm99-1-1
[54] Filaseta, Michael; Mossinghoff, Michael J., The distance to an irreducible polynomial, II, Math. Comp., 81, 279, 1571-1585 (2012) · Zbl 1268.11040 · doi:10.1090/S0025-5718-2011-02555-X
[55] FriJoh M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proc. IEEE, 93 (2) (2005), 216-231.
[56] Ganelius, Tord, Sequences of analytic functions and their zeros, Ark. Mat., 3, 1-50 (1954) · Zbl 0055.06905 · doi:10.1007/BF02589280
[57] Garth, David Ryan, Small limit points of sets of algebraic integers, 156 pp. (2000), ProQuest LLC, Ann Arbor, MI
[58] Garth, David, Complex Pisot numbers of small modulus, C. R. Math. Acad. Sci. Paris, 336, 12, 967-970 (2003) · Zbl 1044.11091 · doi:10.1016/S1631-073X(03)00236-X
[59] Gola M. Golay, The merit factor of Legendre sequences (Corresp.), IEEE Transactions on Information Theory, 29 (6) (1983) 934-936. · Zbl 0537.94009
[60] Gr F. Gray, Pulse code communication, U.S. Patent no. \(2,632,058 (1953)\).
[61] Grandet-Hugot, Marthe, Ensembles ferm\'{e}s d’entiers alg\'{e}briques, Ann. Sci. \'{E}cole Norm. Sup. (3), 82, 1-35 (1965) · Zbl 0138.03003
[62] Hare, Kevin G.; Mossinghoff, Michael J., Negative Pisot and Salem numbers as roots of Newman polynomials, Rocky Mountain J. Math., 44, 1, 113-138 (2014) · Zbl 1294.11186 · doi:10.1216/RMJ-2014-44-1-113
[63] Hart, William B., Fast library for number theory: an introduction. Mathematical software-ICMS 2010, Lecture Notes in Comput. Sci. 6327, 88-91 (2010), Springer, Berlin · Zbl 1273.11177 · doi:10.1007/978-3-642-15582-6\_18
[64] Jedwab, Jonathan; Katz, Daniel J.; Schmidt, Kai-Uwe, Littlewood polynomials with small \(L^4\) norm, Adv. Math., 241, 127-136 (2013) · Zbl 1291.30027 · doi:10.1016/j.aim.2013.03.015
[65] JuskSaha T. Juskevicius and J. Sahasrabudhe, Cosine polynomials with few zeros, arXiv preprint 2005.01695.
[66] HohJen T. Hholdt and H. E. Jensen, Determination of the merit factor of Legendre sequences, IEEE Trans. Information Theory 34 (1988), 161-164. · Zbl 0652.40006
[67] Kelly, John B., A closed set of algebraic integers, Amer. J. Math., 72, 565-572 (1950) · Zbl 0041.17704 · doi:10.2307/2372054
[68] Konvalina, John; Matache, Valentin, Palindrome-polynomials with roots on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can., 26, 2, 39-44 (2004) · Zbl 1152.26318
[69] Konyagin, Sergei V.; Lev, Vsevolod F., Character sums in complex half-planes, J. Th\'{e}or. Nombres Bordeaux, 16, 3, 587-606 (2004) · Zbl 1068.43004
[70] Lifshitz, Alexander; Bistritz, Yuval, A fraction-free unit-circle zero location test for a polynomial with any singularity profile, Linear Multilinear Algebra, 67, 7, 1420-1459 (2019) · Zbl 1450.30012 · doi:10.1080/03081087.2018.1455802
[71] Littlewood, J. E., On the mean values of certain trigonometric polynomials, J. London Math. Soc., 36, 307-334 (1961) · Zbl 0108.05801 · doi:10.1112/jlms/s1-36.1.307
[72] Littlewood, J. E., On the real roots of real trigonometrical polynomials. II, J. London Math. Soc., 39, 511-532 (1964) · Zbl 0142.31205 · doi:10.1112/jlms/s1-39.1.511
[73] Littlewood, J. E., On polynomials \(\sum^n\pm z^m, \sum^ne^{\alpha_mi}z^m, z=e^{\theta_i} \), J. London Math. Soc., 41, 367-376 (1966) · Zbl 0142.32603 · doi:10.1112/jlms/s1-41.1.367
[74] Littlewood, J. E., The real zeros and value distributions of real trigonometrical polynomials, J. London Math. Soc., 41, 336-342 (1966) · Zbl 0142.31301 · doi:10.1112/jlms/s1-41.1.336
[75] Littlewood, John E., Some Problems in Real and Complex Analysis, ix+57 pp. (1968), D. C. Heath and Co. Raytheon Education Co., Lexington, Mass. · Zbl 0185.11502
[76] Littlewood, J. E.; Offord, A. C., On the Number of Real Roots of a Random Algebraic Equation, J. London Math. Soc., 13, 4, 288-295 (1938) · Zbl 0020.13604 · doi:10.1112/jlms/s1-13.4.288
[77] LitOff2 J. E. Littlewood, A. C. Offord, On the number of real roots of a random algebraic equation. II. Math. Proc. of the Cambridge Phil. Soc., 35 (1939), no. 2, 133-148. · Zbl 0021.03702
[78] Littlewood, J. E.; Offord, A. C., On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S., 12(54), 277-286 (1943) · Zbl 0061.01801
[79] WMaple Maple User Manual, Toronto: Maplesoft, a division of Waterloo Maple Inc., 2005-2019.
[80] Mercer, Idris David, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull., 49, 3, 438-447 (2006) · Zbl 1142.30302 · doi:10.4153/CMB-2006-043-x
[81] Mercer, Idris, Newman polynomials, reducibility, and roots on the unit circle, Integers, 12, 4, 503-519 (2012) · Zbl 1279.12002 · doi:10.1515/integers-2011-0120
[82] Mercer, Idris, Newman polynomials not vanishing on the unit circle, Integers, 12, Paper No. A67, 7 pp. (2012) · Zbl 1279.12003
[83] Mignotte, Maurice, Remarque sur une question relative \`a des fonctions conjugu\'{e}es, C. R. Acad. Sci. Paris S\'{e}r. I Math., 315, 8, 907-911 (1992) · Zbl 0773.31002
[84] Mossinghoff, Michael J., The distance to an irreducible polynomial. Gems in experimental mathematics, Contemp. Math. 517, 275-288 (2010), Amer. Math. Soc., Providence, RI · Zbl 1227.11049 · doi:10.1090/conm/517/10146
[85] Mossinghoff, Michael J., Polynomials with restricted coefficients and prescribed noncyclotomic factors, LMS J. Comput. Math., 6, 314-325 (2003) · Zbl 1134.11319 · doi:10.1112/S1461157000000474
[86] Mossinghoff, Michael J.; Pinner, Christopher G.; Vaaler, Jeffrey D., Perturbing polynomials with all their roots on the unit circle, Math. Comp., 67, 224, 1707-1726 (1998) · Zbl 0909.12003 · doi:10.1090/S0025-5718-98-01007-2
[87] Mukunda, Keshav, Littlewood Pisot numbers, J. Number Theory, 117, 1, 106-121 (2006) · Zbl 1095.11049 · doi:10.1016/j.jnt.2005.05.009
[88] Mu2 K. Mukunda, Pisot and salem numbers from polynomials of height one, PhD Thesis, Simon Fraser University, Burnaby BC, 2007, 140-152.
[89] Mukunda, Keshav, Pisot numbers from \(\{0,1\} \)-polynomials, Canad. Math. Bull., 53, 1, 140-152 (2010) · Zbl 1227.11110 · doi:10.4153/CMB-2010-028-7
[90] mingw64 MinGW-w64 Project at http://mingw-w64.org.
[91] msys2 MSYS2 Project at https://github.com/msys2/msys2.
[92] Newman, D. J., Norms of polynomials, Amer. Math. Monthly, 67, 778-779 (1960) · Zbl 0102.05904 · doi:10.2307/2308661
[93] Newman, D. J., An \(L^1\) extremal problem for polynomials, Proc. Amer. Math. Soc., 16, 1287-1290 (1965) · Zbl 0151.08103 · doi:10.2307/2035916
[94] Odlyzko, A. M.; Poonen, B., Zeros of polynomials with \(0,1\) coefficients, Enseign. Math. (2), 39, 3-4, 317-348 (1993) · Zbl 0814.30006
[95] Soundararajan, K., Equidistribution of zeros of polynomials, Amer. Math. Monthly, 126, 3, 226-236 (2019) · Zbl 1409.42003 · doi:10.1080/00029890.2019.1546078
[96] Rahman, Q. I.; Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series 26, xiv+742 pp. (2002), The Clarendon Press, Oxford University Press, Oxford · Zbl 1072.30006
[97] RotYou T. Rothwell and J. Youngman, The GNU C Reference Manual, (2015). Retrieved from https://www.gnu.org/software/gnu-c-manual/.
[98] Sage The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), 2018, https://www.sagemath.org.
[99] Sahasrabudhe, Julian, Counting zeros of cosine polynomials: on a problem of Littlewood, Adv. Math., 343, 495-521 (2019) · Zbl 1404.42003 · doi:10.1016/j.aim.2018.11.025
[100] Salem, R., A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J., 11, 103-108 (1944) · Zbl 0063.06657
[101] Salem, R., Power series with integral coefficients, Duke Math. J., 12, 153-172 (1945) · Zbl 0060.21601
[102] Salem, Rapha\"{e}l, Algebraic Numbers and Fourier Analysis, x+68 pp. (1963), D. C. Heath and Co., Boston, Mass. · Zbl 0126.07802
[103] Samet, P. A., Algebraic integers with two conjugates outside the unit circle. II, Proc. Cambridge Philos. Soc., 50, 346 pp. (1954) · Zbl 0055.03403 · doi:10.1017/s0305004100029418
[104] Saund S. V. Saunders, Polynomials of small Mahler measure with no Newman multiples, (Master’s thesis), (2017). Retrieved from scholarcommons.sc.edu/etd/4369.
[105] Schinzel, A., Reducibility of polynomials and covering systems of congruences, Acta Arith., 13, 91-101 (1967/68) · Zbl 0171.00701 · doi:10.4064/aa-13-1-91-101
[106] Smyth, C. J., Some results on Newman polynomials, Indiana Univ. Math. J., 34, 1, 195-200 (1985) · Zbl 0582.30002 · doi:10.1512/iumj.1985.34.34010
[107] Smyth, C. J., Salem numbers of negative trace, Math. Comp., 69, 230, 827-838 (2000) · Zbl 0988.11050 · doi:10.1090/S0025-5718-99-01099-6
[108] Solomyak, Boris, Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc. (3), 68, 3, 477-498 (1994) · Zbl 0820.30007 · doi:10.1112/plms/s3-68.3.477
[109] Scheidemann, Volker, Introduction to Complex Analysis in Several Variables, viii+171 pp. (2005), Birkh\"{a}user Verlag, Basel · Zbl 1085.32001
[110] Sch I. Schur, Unteruchungen \"uber algebraische Gleichungen., Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 403-428. · JFM 59.0911.02
[111] Sze G. Szego, Bemerkungen zu einem Satz von E. Schmidt \"uber algebraische Gleichungen., Sitz Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86-98. · Zbl 0008.38606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.