×

On the complexity of integer matrix multiplication. (English) Zbl 1395.68152

Summary: Let \(\mathsf{M}(n)\) denote the bit complexity of multiplying \(n\)-bit integers, let \(\omega \in(2, 3]\) be an exponent for matrix multiplication, and let \(\lg^\ast n\) be the iterated logarithm. Assuming that \(\log d = O(n)\) and that \(\mathsf{M}(n) /(n \log n)\) is increasing, we prove that \(d \times d\) matrices with \(n\)-bit integer entries may be multiplied in \[ O(d^2 \mathsf{M}(n) + d^\omega n 2^{O(\lg^\ast n - \lg^\ast d)} \mathsf{M}(\lg d) / \lg d) \] bit operations. In particular, if \(n\) is large compared to \(d\), say \(d = O(\log n)\), then the complexity is only \(O(d^2 \mathsf{M}(n))\).

MSC:

68Q25 Analysis of algorithms and problem complexity
65F30 Other matrix algorithms (MSC2010)
68W30 Symbolic computation and algebraic computation

Software:

Mathemagix

References:

[1] Agrawal, M.; Kayal, N.; Saxena, N., PRIMES is in P, Ann. Math. (2), 160, 2, 781-793 (2004) · Zbl 1071.11070
[2] Baker, R. C.; Harman, G.; Pintz, J., The difference between consecutive primes. II, Proc. Lond. Math. Soc. (3), 83, 3, 532-562 (2001) · Zbl 1016.11037
[3] Bluestein, L., A linear filtering approach to the computation of discrete Fourier transform, IEEE Trans. Audio Electroacoust., 18, 4, 451-455 (Dec 1970)
[4] Bostan, A.; Schost, É., Polynomial evaluation and interpolation on special sets of points, J. Complex., 21, 4, 420-446 (2005) · Zbl 1101.68039
[5] Bostan, A.; Gaudry, P.; Schost, É., Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator, SIAM J. Comput., 36, 6, 1777-1806 (2007) · Zbl 1210.11126
[6] Cantor, D. G.; Kaltofen, E., On fast multiplication of polynomials over arbitrary algebras, Acta Inform., 28, 693-701 (1991) · Zbl 0766.68055
[7] Chudnovsky, D. V.; Chudnovsky, G. V., Computer algebra in the service of mathematical physics and number theory, (Computers in Mathematics. Computers in Mathematics, Stanford, CA, 1986. Computers in Mathematics. Computers in Mathematics, Stanford, CA, 1986, Lect. Notes in Pure and Applied Math., vol. 125 (1990), Dekker: Dekker New York), 109-232 · Zbl 0712.11078
[8] Coppersmith, D., Winograd, S., 1987. Matrix multiplication via arithmetic progressions. In: Proc. of the 19th Annual Symposium on Theory of Computing, New York City, May 25-27, 1987, pp. 1-6.; Coppersmith, D., Winograd, S., 1987. Matrix multiplication via arithmetic progressions. In: Proc. of the 19th Annual Symposium on Theory of Computing, New York City, May 25-27, 1987, pp. 1-6. · Zbl 0702.65046
[9] Fürer, M., Faster integer multiplication, SIAM J. Comput., 39, 3, 979-1005 (2009) · Zbl 1192.68926
[10] Haible, B.; Papanikolaou, T., Fast multiple-precision evaluation of elementary functions (1997), Universität Darmstadt, Technical Report TI-7/97
[11] Harvey, D., Counting points on hyperelliptic curves in average polynomial time, Ann. Math. (2), 179, 2, 783-803 (2014) · Zbl 1294.11104
[12] Harvey, D., Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc. (3), 111, 6, 1379-1401 (2015) · Zbl 1333.11062
[13] Harvey, D.; Sutherland, A. V., Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, Algorithmic Number Theory Eleventh International Symposium (ANTS XI). Algorithmic Number Theory Eleventh International Symposium (ANTS XI), LMS J. Comput. Math., 17, 257-273 (2014) · Zbl 1296.11076
[14] Harvey, D.; Sutherland, A. V., Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II, (Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures. Frobenius Distributions: Lang-Trotter and Sato-Tate Conjectures, Contemp. Math., vol. 663 (2016), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 127-148 · Zbl 1417.11121
[15] Harvey, D.; Massierer, M.; Sutherland, A. V., Computing \(L\)-series of geometrically hyperelliptic curves of genus three, LMS J. Comput. Math., 19, suppl. A, 220-234 (2016) · Zbl 1404.11143
[16] Harvey, D.; van der Hoeven, J.; Lecerf, G., Even faster integer multiplication, J. Complex., 36, 1-30 (2016) · Zbl 1350.68145
[17] Harvey, D.; van der Hoeven, J.; Lecerf, G., Faster polynomial multiplication over finite fields, J. ACM, 63, 6, 52:1-52:23 (January 2017) · Zbl 1426.68310
[18] Le Gall, F., 2014. Powers of tensors and fast matrix multiplication. In: Proc. ISSAC 2014, Kobe, Japan, July 23-25, 2014, pp. 296-303.; Le Gall, F., 2014. Powers of tensors and fast matrix multiplication. In: Proc. ISSAC 2014, Kobe, Japan, July 23-25, 2014, pp. 296-303. · Zbl 1325.65061
[19] Papadimitriou, C. H., Computational Complexity (1994), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA · Zbl 0833.68049
[20] Schönhage, A.; Strassen, V., Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen), 7, 281-292 (1971) · Zbl 0223.68007
[21] Shparlinski, I., On finding primitive roots in finite fields, Theor. Comput. Sci., 157, 2, 273-275 (1996) · Zbl 0871.11091
[22] Storjohann, A., Algorithms for matrix canonical forms (2000), ETH Zürich, PhD thesis
[23] Strassen, V., Gaussian elimination is not optimal, Numer. Math., 13, 352-356 (1969) · Zbl 0185.40101
[24] van der Hoeven, J., Fast evaluation of holonomic functions, Theor. Comput. Sci., 210, 199-215 (1999) · Zbl 0912.68081
[25] van der Hoeven, J., Fast evaluation of holonomic functions near and in singularities, J. Symb. Comput., 31, 717-743 (2001) · Zbl 0982.65024
[26] van der Hoeven, J., 2004. The truncated Fourier transform and applications. In: Gutierrez, J. (Ed.), Proc. ISSAC 2004, Univ. of Cantabria, Santander, Spain, July 4-7, 2004, pp. 290-296.; van der Hoeven, J., 2004. The truncated Fourier transform and applications. In: Gutierrez, J. (Ed.), Proc. ISSAC 2004, Univ. of Cantabria, Santander, Spain, July 4-7, 2004, pp. 290-296. · Zbl 1064.65158
[27] van der Hoeven, J., Efficient accelero-summation of holonomic functions, J. Symb. Comput., 42, 4, 389-428 (2007) · Zbl 1125.34072
[28] van der Hoeven, J., Newton’s method and FFT trading, J. Symb. Comput., 45, 8, 857-878 (2010) · Zbl 1192.13017
[29] van der Hoeven, J.; Lecerf, G.; Mourrain, B., Mathemagix (2002)
[30] van der Hoeven, J.; Lecerf, G.; Quintin, G., Modular SIMD arithmetic in Mathemagix (2014), Technical report, ArXiv · Zbl 1391.65003
[31] von zur Gathen, J.; Gerhard, J., Modern Computer Algebra (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1055.68168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.