×

Physics, astrophysics and cosmology with gravitational waves. (English) Zbl 1166.85002

Summary: Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

MSC:

85-02 Research exposition (monographs, survey articles) pertaining to astronomy and astrophysics
85A40 Astrophysical cosmology
83B05 Observational and experimental questions in relativity and gravitational theory
83C35 Gravitational waves

References:

[1] Abbott, B.; LIGO Scientific Collaboration, Analysis of First LIGO Science Data for Stochastic Gravitational Waves, Phys. Rev. D, 69, 122004 (2004) · doi:10.1103/PhysRevD.69.122004
[2] Abbott, B.; LIGO Scientific Collaboration, Analysis of LIGO data for gravitational waves from binary neutron stars, Phys. Rev. D, 69, 122001 (2004) · doi:10.1103/PhysRevD.69.122001
[3] Abbott, B.; LIGO Scientific Collaboration, Detector description and performance for the first coincidence observations between LIGO and GEO, Nucl. Instrum. Methods A, 517, 154-179 (2004) · doi:10.1016/j.nima.2003.11.124
[4] Abbott, B.; LIGO Scientific Collaboration, First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform, Phys. Rev. D, 72, 102004 (2005) · doi:10.1103/PhysRevD.72.102004
[5] Abbott, B.; LIGO Scientific Collaboration, Limits on gravitational wave emission from selected pulsars using LIGO data, Phys. Rev. Lett., 94, 181103 (2005) · doi:10.1103/PhysRevLett.94.181103
[6] Abbott, B.; LIGO Scientific Collaboration, Search for gravitational waves from galactic and extra-galactic binary neutron stars, Phys. Rev. D, 72, 082001 (2005) · doi:10.1103/PhysRevD.72.082001
[7] Abbott, B.; LIGO Scientific Collaboration, Search for gravitational waves from primordial black hole binary coalescences in the galactic halo, Phys. Rev. D, 72, 082002 (2005) · doi:10.1103/PhysRevD.72.082002
[8] Abbott, B.; LIGO Scientific Collaboration, Search for gravitational waves from binary black hole inspirals in LIGO data, Phys. Rev. D, 73, 062001 (2006) · doi:10.1103/PhysRevD.73.062001
[9] Abbott, B.; LIGO Scientific Collaboration, Search for gravitational-wave bursts in LIGO data from the fourth science run, Class. Quantum Grav., 24, 5343-5370 (2007) · doi:10.1088/0264-9381/24/22/002
[10] Abbott, B.; LIGO Scientific Collaboration, Upper limits on gravitational wave emission from 78 radio pulsars, Phys. Rev. D, 76, 042001 (2007) · doi:10.1103/PhysRevD.76.042001
[11] Abbott, B.; LIGO Scientific Collaboration, All-sky search for periodic gravitational waves in LIGO S4 data, Phys. Rev. D, 77, 022001 (2008) · doi:10.1103/PhysRevD.77.022001
[12] Abbott, B.; LIGO Scientific Collaboration, Beating the spin-down limit on gravitational wave emission from the Crab pulsar, Astrophys. J. Lett., 683, L45-L49 (2008) · doi:10.1086/591526
[13] Abbott, B.; LIGO Scientific Collaboration, The Einstein(AT)Home search for periodic gravitational waves in LIGO S4 data, Phys. Rev. D, 79, 022001 (2008) · doi:10.1103/PhysRevD.79.022001
[14] Abbott, B.; LIGO Scientific Collaboration, Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs, Phys. Rev. D, 77, 062004 (2008) · doi:10.1103/PhysRevD.77.062004
[15] Abbott, B.; LIGO Scientific Collaboration, Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals, Phys. Rev. D, 78, 042002 (2008) · doi:10.1103/PhysRevD.78.042002
[16] Abbott, B.; LIGO Scientific Collaboration, Implications for the Origin of GRB 070201 from LIGO Observations, Astrophys. J., 681, 1419-1430 (2008) · doi:10.1086/587954
[17] Abbott, B.; LIGO Scientific Collaboration; ALLEGRO Collaboration, First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds, Phys. Rev. D, 76, 22001, 1-17 (2007)
[18] Abramovici, A.; Althouse, WE; Drever, RWP; Gürsel, Y.; Kawamura, S.; Raab, FJ; Shoemaker, DH; Sievers, L.; Spero, RE; Thorne, KS; Vogt, RE; Weiss, R.; Whitcomb, SE; Zucker, ME, LIGO: The Laser Interferometer-Gravitational Wave Observatory, Science, 256, 325-333 (1992) · doi:10.1126/science.256.5055.325
[19] Acernese, F.; Virgo Collaboration, The Virgo status, Class. Quantum Grav., 23, S635-S642 (2006) · Zbl 1133.85312 · doi:10.1088/0264-9381/23/19/S01
[20] Acernese, F.; Virgo Collaboration, Status of Virgo detector, Class. Quantum Grav., 24, S381-S388 (2007) · Zbl 1206.83052 · doi:10.1088/0264-9381/24/19/S01
[21] Aguiar, OD; Andrade, LA; Barroso, JJ; Bortoli, F.; Carneiro, LA; Castro, PJ; Costa, CA; Costa, KMF; de Araujo, JCN; de Lucena, AU; de Paula, W.; de Rey Neto, EC; de Souza, ST; Fauth, AC; Frajuca, C.; Frossati, G.; Furtado, SR; Magalháes, NS; Marinho, RM Jr; Matos, ES; Melo, JL; Miranda, OD; Oliveira, NF Jr; Paleo, BW; Remy, M.; Ribeiro, KL; Stellati, C.; Velloso, WF Jr; Weber, J., The Brazilian gravitational wave detector Mario Schenberg: progress and plans, Class. Quantum Grav., 22, S209-S214 (2005) · doi:10.1088/0264-9381/22/10/011
[22] Ajith, P., Phenomenological template family for black-hole coalescence waveforms, Class. Quantum Grav., 24, S689-S700 (2007) · Zbl 1206.83092 · doi:10.1088/0264-9381/24/19/S31
[23] Akutsu, T.; Kawamura, S.; Nishizawa, A.; Arai, K.; Yamamoto, K.; Tatsumi, D.; Nagano, S.; Nishida, E.; Chiba, T.; Takahashi, R.; Sugiyama, N.; Fukushima, M.; Yamazaki, T.; Fujimoto, M., Search for a stochastic background of 100-MHz gravitational waves with laser interferometers, Phys. Rev. Lett., 101, 101101 (2008) · doi:10.1103/PhysRevLett.101.101101
[24] Albert Einstein Institute, “Laser Interferometer Space Antenna”, project homepage. URL (cited on 08 November 2007): http://www.lisa.aei-hannover.de/. 4.4.3
[25] Alcock, C.; Allsman, RA; Alves, D.; Axelrod, TS; Becker, AC; Bennett, DP; Cook, KH; Freeman, KC; Griest, K.; Guern, J.; Lehner, MJ; Marshall, SL; Peterson, BA; Pratt, MR; Quinn, PJ; Rodgers, AW; Stubbs, CW; Sutherland, W.; Welch, DL; The MACHO Collaboration, The MACHO Project: LMC Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo, Astrophys. J., 486, 697-726 (1997) · doi:10.1086/304535
[26] Allen, B., Stochastic gravity-wave background in inflationary-universe models, Phys. Rev. D, 37, 2078-2085 (1988) · doi:10.1103/PhysRevD.37.2078
[27] Allen, B.; Marck, J-A; Lasota, J-P, The Stochastic Gravity-Wave Background: Sources and Detection, Relativistic Gravitation and Gravitational Radiation, 373-418 (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0928.53044
[28] Allen, B., χ^2 time-frequency discriminator for gravitational wave detection, Phys. Rev. D, 71, 062001 (2005) · doi:10.1103/PhysRevD.71.062001
[29] Allen, ZA; International Gravitational Event Collaboration, First Search for Gravitational Wave Bursts with a Network of Detectors, Phys. Rev. Lett., 85, 5046-5050 (2000) · doi:10.1103/PhysRevLett.85.5046
[30] Amaro-Seoane, P.; Merkowitz, SM; Livas, JC, Gravitational waves from coalescing massive black holes in young dense clusters, Laser Interferometer Space Antenna: Sixth International LISA Symposium, 250-256 (2006), Melville, NY: American Institute of Physics, Melville, NY
[31] Amaro-Seoane, P.; Freitag, M., Intermediate-mass black holes in colliding clusters: Implications for lower-frequency gravitational-wave astronomy, Astrophys. J., 653, L53-L56 (2006) · doi:10.1086/510405
[32] Amaro-Seoane, P.; Gair, JR; Freitag, M.; Coleman, MM; Mandel, I.; Cutler, CJ; Babak, S., Intermediate and Extreme Mass-Ratio Inspirals — Astrophysics, Science Applications and Detection using LISA, Class. Quantum Grav., 24, R113-R170 (2007) · Zbl 1128.85300 · doi:10.1088/0264-9381/24/17/R01
[33] Anderson, WG; Brady, PR; Creighton, JDE; Flanagan, ÉÉ, A power filter for the detection of burst sources of gravitational radiation in interferometric detectors, Int. J. Mod. Phys. D, 9, 303-307 (2000) · doi:10.1142/S0218271800000323
[34] Andersson, N., A new class of unstable modes of rotating relativistic stars, Astrophys. J., 502, 708-713 (1998) · doi:10.1086/305919
[35] Andersson, N., and Comer, G.L., “Relativistic Fluid Dynamics: Physics for Many Different Scales”, Living Rev. Relativity, 10, lrr-2007-1, (2007). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2007-1. 7.3.3, 7.3.4.2 · Zbl 1255.85001
[36] Andersson, N.; Kokkotas, KD, Towards gravitational wave asteroseismology, Mon. Not. R. Astron. Soc., 299, 1059-1068 (1998) · doi:10.1046/j.1365-8711.1998.01840.x
[37] Andersson, N.; Kokkotas, KD; Schutz, BF, Gravitational radiation limit on the spin of young neutron stars, Astrophys. J., 510, 846-853 (1999) · doi:10.1086/306625
[38] Apostolatos, TA, Search templates for gravitational waves from precessing, inspiraling binaries, Phys. Rev. D, 52, 605-620 (1995) · doi:10.1103/PhysRevD.52.605
[39] Aricebo Observatory, “NanoGrav”, project homepage. URL (cited on 19 May 2008): http://arecibo.cac.cornell.edu/arecibo-staging/nanograv/. 4.4.2
[40] Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2006-1. 4.2, 4.4.1 · Zbl 1255.83003
[41] Arnaud, N.; Barsuglia, M.; Bizouard, M-A; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Kreckelbergh, S.; Porter, EK, Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors, Phys. Rev. D, 68, 102001 (2003) · doi:10.1103/PhysRevD.68.102001
[42] Arnaud, N.; Barsuglia, M.; Bizouard, M-A; Canitrot, P.; Cavalier, F.; Davier, M.; Hello, P.; Pradier, T., Detection in coincidence of gravitational wave bursts with a network of interferometric detectors. I: Geometric acceptance and timing, Phys. Rev. D, 65, 042004 (2002) · doi:10.1103/PhysRevD.65.042004
[43] Arons, J., Magnetars in the Metagalaxy: An Origin for Ultra-High-Energy Cosmic Rays in the Nearby Universe, Astrophys. J., 589, 871-892 (2003) · doi:10.1086/374776
[44] Arun, KG, Parameter estimation of coalescing supermassive black hole binaries with LISA, Phys. Rev. D, 74, 024025 (2006) · doi:10.1103/PhysRevD.74.024025
[45] Arun, KG; Iyer, BR; Qusailah, MSS; Sathyaprakash, BS, Probing the non-linear structure of general relativity with black hole mergers, Phys. Rev. D, 74, 024006 (2006) · doi:10.1103/PhysRevD.74.024006
[46] Arun, KG; Iyer, BR; Qusailah, MSS; Sathyaprakash, BS, Testing post-Newtonian theory with gravitational wave observations, Class. Quantum Grav., 23, L37-L43 (2006) · Zbl 1101.83302 · doi:10.1088/0264-9381/23/9/L01
[47] Arun, KG; Iyer, BR; Sathyaprakash, BS; Sinha, S., Higher harmonics increase LISA’s mass reach for supermassive black holes, Phys. Rev. D, 75, 124002 (2007) · doi:10.1103/PhysRevD.75.124002
[48] Arun, KG; Iyer, BR; Sathyaprakash, BS; Sinha, S.; Van Den Broeck, C., Higher signal harmonics, LISA’s angular resolution and dark energy, Phys. Rev. D, 76, 104016 (2007) · doi:10.1103/PhysRevD.76.104016
[49] Arun, KG; Iyer, BR; Sathyaprakash, BS; Sundararajan, PA, Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case, Phys. Rev. D, 71, 84008, 1-16 (2005)
[50] Astone, P.; Babusci, D.; Baggio, L.; Bassan, M.; Blair, DG; Bonaldi, M.; Bonifazi, P.; Busby, D.; Carelli, P.; Cerdonio, M.; Coccia, E.; Conti, L.; Cosmelli, C.; D’Antonio, S.; Fafone, V.; Falferi, P.; Fortini, P.; Frasca, S.; Giordano, G.; Hamilton, WO; Heng, IS; Ivanov, EN; Johnson, WW; Marini, A.; Mauceli, E.; McHugh, MP; Mezzena, R.; Minenkov, Y.; Modena, I.; Modestino, G.; Moleti, A.; Ortolan, A.; Pallottino, GV; Pizzella, G.; Prodi, GA; Quintieri, L.; Rocchi, A.; Rocco, E.; Ronga, F.; Salemi, F.; Santostasi, G.; Taffarello, L.; Terenzi, R.; Tobar, ME; Torrioli, G.; Vedovato, G.; Vinante, A.; Visco, M.; Vitale, S.; Zendri, JP; International Gravitational Event Collaboration, Methods and results of the IGEC search for burst gravitational waves in the years 1997-2000, Phys. Rev. D, 68, 22001, 1-33 (2003)
[51] Astone, P.; Babusci, D.; Bassan, M.; Bonifazi, P.; Coccia, E.; D’Antonio, S.; Fafone, V.; Giordano, G.; Marini, A.; Minenkov, Y.; Modena, I.; Modestino, G.; Moleti, A.; Pallottino, GV; Pizzella, G.; Quintieri, L.; Rocchi, A.; Ronga, F.; Terenzi, R.; Visco, M., The next science run of the gravitational wave detector NAUTILUS, Class. Quantum Grav., 19, 1911-1917 (2002) · Zbl 1013.83503 · doi:10.1088/0264-9381/19/7/392
[52] Astone, P.; Bassan, M.; Bonifazi, P.; Carelli, P.; Coccia, E.; Fafone, V.; Frasca, S.; Minenkov, Y.; Modena, I.; Modestino, P.; Moleti, A.; Pallottino, GV; Pizzella, G.; Terenzi, R.; Visco, M., Upper limit at 1.8 kHz for a gravitational-wave stochastic background with the ALTAIR resonant-mass detector, Astron. Astrophys., 343, 19 (1999)
[53] Astone, P.; Lobo, A.; Schutz, BF, Coincidence experiments between interferometric and resonant bar detectors of gravitational waves, Class. Quantum Grav., 11, 2093-2112 (1994) · doi:10.1088/0264-9381/11/8/015
[54] Astone, P.; IGEC-2 Collaboration, Results of the IGEC-2 search for gravitational wave bursts during 2005, Phys. Rev. D, 76, 102001 (2007) · doi:10.1103/PhysRevD.76.102001
[55] Australia Telescope National Facility, “ATNF Pulsar Catalogue”, web interface to database. URL (cited on 19 May 2008): http://www.atnf.csiro.au/research/pulsar/psrcat/. 7.3.6
[56] Australian National University, “ACIGA: Australian Consortium for Interferometric Gravitational Astronomy”, project homepage. URL (cited on 08 November 2007): http://www.anu.edu.au/Physics/ACIGA/. 4.3.1
[57] Babak, S.; Fang, H.; Gair, JR; Glampedakis, K.; Hughes, SA, ‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole, Phys. Rev. D, 75, 024005 (2007) · doi:10.1103/PhysRevD.75.024005
[58] Babak, S., Hannam, M., Husa, S., and Schutz, B.F., “Resolving Super Massive Black Holes with LISA”, arXiv e-print, (2008). [arXiv:0806.1591]. 8.3
[59] Baggio, L.; Bignotto, M.; Bonaldi, M.; Cerdonio, M.; Conti, L.; Falferi, P.; Liguori, N.; Marin, A.; Mezzena, R.; Ortolan, A.; Poggi, A.; Prodi, GA; Salemi, F.; Soranzo, G.; Taffarello, L.; Vedovato, G.; Vinante, A.; Vitale, S.; Zendri, JP, 3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors, Phys. Rev. Lett., 94, 241101 (2005) · doi:10.1103/PhysRevLett.94.241101
[60] Baiotti, L.; Giacomazzo, B.; Rezzolla, L., Accurate evolutions of inspiralling neutronstar binaries: prompt and delayed collapse to black hole, Phys. Rev. D, 78, 084033 (2008) · doi:10.1103/PhysRevD.78.084033
[61] Baker, JG; Centrella, J.; Choi, D-I; Koppitz, M.; van Meter, J., Gravitational-wave extraction from an inspiraling configuration of merging black holes, Phys. Rev. Lett., 96, 111102 (2006) · doi:10.1103/PhysRevLett.96.111102
[62] Baker, JG; Centrella, JM; Choi, D-I; Koppitz, M.; van Meter, JR; Miller, MC, Getting a kick out of numerical relativity, Astrophys. J. Lett., 653, L93-L96 (2006) · doi:10.1086/510448
[63] Balasubramanian, R.; Dhurandhar, SV, Estimation of parameters of gravitational wave signals from coalescing binaries, Phys. Rev. D, 57, 3408-3422 (1998) · doi:10.1103/PhysRevD.57.3408
[64] Balasubramanian, R.; Sathyaprakash, BS; Dhurandhar, SV, Estimation of parameters of gravitational waves from coalescing binaries, Pramana, 45, L463-L470 (1995) · doi:10.1007/BF02875180
[65] Balasubramanian, R.; Sathyaprakash, BS; Dhurandhar, SV, Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters, Phys. Rev. D, 53, 3033-3055 (1996) · doi:10.1103/PhysRevD.53.3033
[66] Barack, L.; Cutler, C., Confusion Noise from LISA Capture Sources, Phys. Rev. D, 70, 122002 (2004) · doi:10.1103/PhysRevD.70.122002
[67] Barack, L.; Cutler, C., LISA Capture Sources: Approximate Waveforms, Signal-to-Noise Ratios, and Parameter Estimation Accuracy, Phys. Rev. D, 69, 082005 (2004) · doi:10.1103/PhysRevD.69.082005
[68] Barack, L.; Cutler, C., Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes, Phys. Rev. D, 75, 042003 (2007) · doi:10.1103/PhysRevD.75.042003
[69] Baskaran, D.; Grishchuk, LP, Components of the gravitational force in the field of a gravitational wave, Class. Quantum Grav., 21, 4041-4061 (2004) · Zbl 1061.83018 · doi:10.1088/0264-9381/21/17/003
[70] Bender, PL; Brillet, A.; Ciufolini, I.; Cruise, AM; Cutler, C.; Danzmann, K.; Fidecaro, F.; Folkner, WM; Hough, J.; McNamara, PW; Peterseim, M.; Robertson, D.; Rodrigues, M.; Rüdiger, A.; Sandford, M.; Schäfer, G.; Schilling, R.; Schutz, BF; Speake, CC; Stebbins, RT; Sumner, TJ; Touboul, P.; Vinet, J-Y; Vitale, S.; Ward, H.; Winkler, W.; LISA Study Team, LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space. Pre-Phase A report. Second Edition (1998), Garching: Max-Planck-Institut für Quantenoptik, Garching
[71] Bender, PL; Ciufolini, I.; Danzmann, K.; Folkner, WM; Hough, J.; Robertson, D.; Rüdiger, A.; Sandford, M.; Schilling, R.; Schutz, BF; Stebbins, R.; Sumner, T.; Touboul, P.; Vitale, S.; Ward, H.; Winkler, W.; Cornelisse, J.; Hechler, F.; Jafry, Y.; Reinhard, R., LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. A Cornerstone Project in ESA’s long term space science programme “Horizon 2000 Plus”. Pre-Phase A Report, December 1995 (1996), Garching: Max-Planck-Institut für Quantenoptik, Garching
[72] Bennett, C.; Hill, RS; Hinshaw, G.; Nolta, MR; Odegard, N.; Page, L.; Spergel, DN; Weiland, JL; Wright, EL; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, SS; Tucker, GS; Wollack, E., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission, Astrophys. J. Suppl. Ser., 148, 97 (2003) · doi:10.1086/377252
[73] Berti, E.; Buonanno, A.; Will, CM, Estimating spinning binary parameters and testing alternative theories of gravity with LISA, Phys. Rev. D, 71, 084025 (2005) · doi:10.1103/PhysRevD.71.084025
[74] Berti, E.; Buonanno, A.; Will, CM, Testing general relativity and probing the merger history of massive black holes with LISA, Class. Quantum Grav., 22, S943-S954 (2005) · Zbl 1081.83529 · doi:10.1088/0264-9381/22/18/S08
[75] Berti, E.; Cardoso, V.; Gonzalez, JA; Sperhake, U.; Hannam, M.; Husa, S.; Brügmann, B., Inspiral, merger and ringdown of unequal mass black hole binaries: A multipolar analysis, Phys. Rev. D, 76, 064034 (2007) · doi:10.1103/PhysRevD.76.064034
[76] Berti, E.; Cardoso, V.; Will, CM, Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D, 73, 064030 (2006) · doi:10.1103/PhysRevD.73.064030
[77] Bildsten, L., Gravitational radiation and rotation of accreting neutron stars, Astrophys. J. Lett., 501, L89-L93 (1998) · doi:10.1086/311440
[78] Blanchet, L.; Marck, J-A; Lasota, JP, Gravitational Radiation from Relativistic Sources, Relativistic Gravitation and Gravitational Radiation, 33-66 (1997), Cambridge: Cambridge University Press, Cambridge
[79] Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2006-4. 2.4, 6.5.3, 6.5.3.1, 6.5.5 · Zbl 1316.83004
[80] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, BR, Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order, Phys. Rev. Lett., 93, 091101 (2004) · doi:10.1103/PhysRevLett.93.091101
[81] Blanchet, L.; Damour, T.; Esposito-Farèse, G.; Iyer, BR, Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses, Phys. Rev. D, 71, 124004 (2005) · doi:10.1103/PhysRevD.71.124004
[82] Blanchet, L.; Damour, T.; Iyer, BR; Will, CM; Wiseman, AG, Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett., 74, 3515-3518 (1995) · doi:10.1103/PhysRevLett.74.3515
[83] Blanchet, L.; Sathyaprakash, BS, Signal analysis of gravitational wave tails, Class. Quantum Grav., 11, 2807-2831 (1994) · doi:10.1088/0264-9381/11/11/020
[84] Blanchet, L.; Sathyaprakash, BS, Detecting the tail effect in gravitational wave experiments, Phys. Rev. Lett., 74, 1067-1070 (1995) · doi:10.1103/PhysRevLett.74.1067
[85] Blanchet, L.; Schäfer, G., Gravitational wave tails and binary star systems, Class. Quantum Grav., 10, 2699-2721 (1993) · doi:10.1088/0264-9381/10/12/026
[86] Bonaldi, M.; Cerdonio, M.; Conti, L.; Falferi, P.; Leaci, P.; Odorizzi, S.; Prodi, GA; Saraceni, M.; Serra, E.; Zendri, JP, Principles of wide bandwidth acoustic detectors and the single-mass dual detector, Phys. Rev. D, 74, 022003 (2006) · doi:10.1103/PhysRevD.74.022003
[87] Bose, S.; Dhurandhar, SV; Pai, A., Detection of gravitational waves using a network of detectors, Pramana, 53, 1125-1136 (1999) · doi:10.1007/s12043-999-0072-1
[88] Boyle, M.; Brown, DA; Kidder, LE; Mroué, AH; Pfeiffer, HP; Scheel, MA; Cook, GB; Teukolsky, SA, High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions, Phys. Rev. D, 76, 124038 (2007) · doi:10.1103/PhysRevD.76.124038
[89] Boyle, M.; Lindblom, L.; Pfeiffer, H.; Scheel, M.; Kidder, LE, Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity, Phys. Rev. D, 75, 024006 (2007) · doi:10.1103/PhysRevD.75.024006
[90] Brady, PR; Creighton, T.; Cutler, C.; Schutz, BF, Searching for periodic sources with LIGO, Phys. Rev. D, 57, 2101-2116 (1998) · doi:10.1103/PhysRevD.57.2101
[91] Bruce, A.; Romano, JD, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D, 59, 102001 (1999) · doi:10.1103/PhysRevD.59.102001
[92] Brügmann, B.; Gonzalez, JA; Hannam, M.; Husa, S.; Sperhake, U., Exploring black hole superkicks, Phys. Rev. D, 77, 124047 (2008) · doi:10.1103/PhysRevD.77.124047
[93] Brustein, R.; Gasperini, M.; Giovannini, M.; Veneziano, G.; Lemonne, J.; Van der Velde, C.; Verbeure, F., Gravitational Radiation from String Cosmology, International Europhysics Conference on High Energy Physics (HEP95), 408-409 (1996), Singapore: World Scientific, Singapore
[94] Buonanno, A.; Bernardeau, F.; Grojean, C.; Dalibard, J., Gravitational waves, Particle Physics and Cosmology: The Fabric of Spacetime, 3-52 (2007), Amsterdam; Oxford: Elsevier, Amsterdam; Oxford
[95] Buonanno, A.; Chen, Y.; Vallisneri, M., Detection template families for precessing binaries of spinning compact binaries: Adiabatic limit, Phys. Rev. D, 67, 104025 (2003) · doi:10.1103/PhysRevD.67.104025
[96] Buonanno, A.; Damour, T., Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, 59, 084006 (1999) · doi:10.1103/PhysRevD.59.084006
[97] Buonanno, A.; Damour, T., Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D, 62, 064015 (2000) · doi:10.1103/PhysRevD.62.064015
[98] Buonanno, A.; Kidder, LE; Lehner, L., Estimating the final spin of a binary black hole coalescence, Phys. Rev. D, 77, 026004 (2008) · doi:10.1103/PhysRevD.77.026004
[99] Buonanno, A.; Maggiore, M.; Ungarelli, C., Spectrum of relic gravitational waves in string cosmology, Phys. Rev. D, 55, 3330-3336 (1997) · doi:10.1103/PhysRevD.55.3330
[100] Buonanno, A., Toward faithful templates for non-spinning binary black holes using the effective-one-body approach, Phys. Rev. D, 76, 104049 (2007) · doi:10.1103/PhysRevD.76.104049
[101] Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, RN; Lyne, AG; Joshi, BC; McLaughlin, MA; Kramer, M.; Sarkissian, JM; Camilo, F.; Kalogera, V.; Kim, C.; Lorimer, DR, An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature, 426, 531-533 (2003) · doi:10.1038/nature02124
[102] Caldwell, RR; Battye, RA; Shellard, EPS, Relic Gravitational Waves from Cosmic Strings: Updated Constraints and Opportunities for Detection, Phys. Rev. D, 54, 7146-7152 (1996) · doi:10.1103/PhysRevD.54.7146
[103] California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 08 November 2007): http://www.ligo.caltech.edu. 4.3.1
[104] Campanelli, M.; Lousto, CO; Marronetti, P.; Zlochower, Y., Accurate evolutions of orbiting black-hole binaries without excision, Phys. Rev. Lett., 96, 111101 (2006) · doi:10.1103/PhysRevLett.96.111101
[105] Campanelli, M.; Lousto, CO; Zlochower, Y.; Merritt, D., Large Merger Recoils and Spin Flips From Generic Black-Hole Binaries, Astrophys. J., 659, L5-L8 (2007) · doi:10.1086/516712
[106] Capon, RA, Radiation Reaction Near Black Holes (1998), Cardiff: University of Wales, Cardiff
[107] Carilli, C.; Rawlings, S., Science with the Square Kilometre Array (2004), Amsterdam: Elsevier, Amsterdam
[108] Caroll, S.M., “The Cosmological Constant”, Living Rev. Relativity, 4, lrr-2001-1, (2001). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2001-1. 8.3
[109] Caron, B.; The VIRGO Collaboration, The Virgo interferometer, Class. Quantum Grav., 14, 1461-1469 (1997)
[110] Caves, CM; Thorne, KS; Drever, RWP; Sandberg, VD; Zimmerman, M., On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle, Rev. Mod. Phys., 52, 341-392 (1980) · doi:10.1103/RevModPhys.52.341
[111] Chandrasekhar, S., Solutions of Two Problems in the Theory of Gravitational Radiation, Phys. Rev. Lett., 24, 611-615 (1970) · doi:10.1103/PhysRevLett.24.611
[112] Chandrasekhar, S., The Mathematical Theory of Black Holes (1992), Oxford; New York: Oxford University Press, Oxford; New York · Zbl 0912.53053
[113] Chatterji, S.; Lazzarini, A.; Stein, L.; Sutton, PJ; Searle, A.; Tinto, M., Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise, Phys. Rev. D, 74, 082005 (2006) · doi:10.1103/PhysRevD.74.082005
[114] Chernoff, DF; Finn, LS, Gravitational radiation, inspiraling binaries, and cosmology, Astrophys. J. Lett., 411, L5-L8 (1993) · doi:10.1086/186898
[115] Christensen, N.; Dupuis, RJ; Woan, G.; Meyer, R., A Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data, Phys. Rev. D, 70, 022001 (2004) · doi:10.1103/PhysRevD.70.022001
[116] Christensen, N.; Meyer, R., Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis, Phys. Rev. D, 58, 082001 (1998) · doi:10.1103/PhysRevD.58.082001
[117] Coccia, E.; Fafone, V.; Frossati, G.; Coccia, E.; Pizzella, G.; Ronga, F., On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors, Gravitational Wave Experiments, 463-478 (1995), Singapore: World Scientific, Singapore
[118] Cokelaer, T., Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals, Phys. Rev. D, 76, 102004 (2007) · doi:10.1103/PhysRevD.76.102004
[119] Compton, KA; Schutz, BF; Ciufolini, I.; Fidecaro, F., Bar-Interferometer Observing, Gravitational Waves: Sources and Detectors, 173-185 (1997), Singapore; River Edge, NJ: World Scientific, Singapore; River Edge, NJ
[120] Cornish, NJ; Littenberg, TB, Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy, Phys. Rev. D, 76, 083006 (2007) · doi:10.1103/PhysRevD.76.083006
[121] Cornish, NJ; Porter, EK, MCMC Exploration of Supermassive Black Hole Binary Inspirals, Class. Quantum Grav., 23, S761-S768 (2006) · Zbl 1117.85313 · doi:10.1088/0264-9381/23/19/S15
[122] Cornish, NJ; Porter, EK, Catching supermassive black hole binaries without a net, Phys. Rev. D, 75, 021301 (2007) · doi:10.1103/PhysRevD.75.021301
[123] Cornish, NJ; Porter, EK, Searching for massive black hole binaries in the first Mock LISA Data Challenge, Class. Quantum Grav., 24, S501-S512 (2007) · Zbl 1206.83097 · doi:10.1088/0264-9381/24/19/S13
[124] Creighton, JDE, Data analysis strategies for the detection of gravitational waves in non-Gaussian noise, Phys. Rev. D, 60, 021101 (1999) · doi:10.1103/PhysRevD.60.021101
[125] Crowder, J.; Cornish, NJ, Extracting galactic binary signals from the first round of Mock LISA Data Challenges, Class. Quantum Grav., 24, S575-S586 (2007) · Zbl 1205.85039 · doi:10.1088/0264-9381/24/19/S20
[126] Cruise, AM; Ingley, RMJ, A prototype gravitational wave detector for 100 MHz, Class. Quantum Grav., 23, 6185-6193 (2006) · Zbl 1117.85302 · doi:10.1088/0264-9381/23/22/007
[127] Cutler, C., Gravitational waves from neutron stars with large toroidal B fields, Phys. Rev. D, 66, 084025 (2002) · doi:10.1103/PhysRevD.66.084025
[128] Cutler, C.; Flanagan, ÉÉ, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?, Phys. Rev. D, 49, 2658-2697 (1994) · doi:10.1103/PhysRevD.49.2658
[129] Cutler, C.; Vallisneri, M., LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms, Phys. Rev. D, 76, 104018 (2007) · doi:10.1103/PhysRevD.76.104018
[130] Daisuke, T.; Ryutaro, T.; Koji, A.; Noriyasu, N.; Kazuhiro, A.; Toshitaka, Y.; Mitsuhiro, F.; Masa-Katsu, F.; Akiteru, T.; Alessandro, B.; Virginio, S.; Riccardo, D.; Szabolcs, M.; Masaki, A.; Kimio, T.; Tomomi, A.; Kazuhiro, Y.; Hideki, I.; Takashi, U.; Shinji, M.; Masatake, O.; Kazuaki, K.; Norichika, A.; Nobuyuki, K.; Akito, A.; Souichi, T.; Takayuki, T.; Tomiyoshi, H.; Akira, Y.; Nobuaki, S.; Toshitaka, S.; Takakazu, S., Current status of Japanese detectors, Class. Quantum Grav., 24, S399-S403 (2007) · Zbl 1137.83310 · doi:10.1088/0264-9381/24/19/S03
[131] Dalal, N.; Holz, DE; Hughes, SA; Jain, B., Short GRB and binary black hole standard sirens as a probe of dark energy, Phys. Rev. D, 74, 063006 (2006) · doi:10.1103/PhysRevD.74.063006
[132] Damour, T.; Hawking, SW; Israel, W., The problem of motion in Newtonian and Einsteinian gravity, Three Hundred Years of Gravitation, 128-198 (1987), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 0966.83509
[133] Damour, T.; Iyer, BR; Sathyaprakash, BS, Improved filters for gravitational waves from inspiraling compact binaries, Phys. Rev. D, 57, 885-907 (1998) · doi:10.1103/PhysRevD.57.885
[134] Damour, T.; Iyer, BR; Sathyaprakash, BS, A comparison of search templates for gravitational waves from binary inspiral, Phys. Rev. D, 63, 044023 (2001) · doi:10.1103/PhysRevD.63.044023
[135] Damour, T.; Nagar, A., Faithful Effective-One-Body waveforms of small-mass-ratio coalescing black-hole binaries, Phys. Rev. D, 76, 064028 (2007) · doi:10.1103/PhysRevD.76.064028
[136] Damour, T.; Nagar, A., Final spin of a coalescing black-hole binary: An effective-one-body approach, Phys. Rev. D, 76, 044003 (2007) · doi:10.1103/PhysRevD.76.044003
[137] Damour, T.; Nagar, A., Comparing Effective-One-Body gravitational waveforms to accurate numerical data, Phys. Rev. D, 77, 024043 (2008) · doi:10.1103/PhysRevD.77.024043
[138] Damour, T.; Nagar, A.; Dorband, EN; Pollney, D.; Rezzolla, L., Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries, Phys. Rev. D, 77, 084017 (2008) · doi:10.1103/PhysRevD.77.084017
[139] Damour, T.; Nagar, A.; Hannam, M.; Husa, S.; Brügmann, B., Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries, Phys. Rev. D, 78, 044039 (2008) · doi:10.1103/PhysRevD.78.044039
[140] Damour, T.; Vilenkin, A., Gravitational wave bursts from cosmic strings, Phys. Rev. Lett., 85, 3761-3764 (2000) · doi:10.1103/PhysRevLett.85.3761
[141] Damour, T.; Vilenkin, A., Gravitational wave bursts from cusps and kinks on cosmic strings, Phys. Rev. D, 64, 064008 (2001) · doi:10.1103/PhysRevD.64.064008
[142] Damour, T.; Vilenkin, A., Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D, 71, 063510 (2005) · doi:10.1103/PhysRevD.71.063510
[143] Danzmann, K.; Lück, H.; Rüdiger, A.; Schilling, R.; Schrempel, M.; Winkler, W.; Hough, J.; Newton, GP; Robertson, NA; Ward, H.; Campbell, AM; Logan, JE; Robertson, DI; Strain, KA; Bennett, JRJ; Kose, V.; Kühne, M.; Schutz, BF; Nicholson, D.; Shuttleworth, J.; Welling, H.; Aufmuth, P.; Rinkleff, R.; Tünnermann, A.; Willke, B.; Coccia, E.; Pizzella, G.; Ronga, F., GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna, Gravitational Wave Experiments, 100-111 (1995), Singapore: World Scientific, Singapore
[144] Danzmann, K.; Rüdiger, A., LISA technology — concept, status, prospects, Class. Quantum Grav., 20, S1-S9 (2003) · Zbl 1023.83505 · doi:10.1088/0264-9381/20/10/301
[145] Dhurandhar, SV; Sathyaprakash, BS, Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise, Phys. Rev. D, 49, 1707-1722 (1994) · doi:10.1103/PhysRevD.49.1707
[146] Dhurandhar, SV; Tinto, M., Astronomical observations with a network of detectors of gravitational waves — I. Mathematical framework and solution of the five detector problem, Mon. Not. R. Astron. Soc., 234, 663 (1988) · Zbl 0663.76037 · doi:10.1093/mnras/234.3.663
[147] Dimmelmeier, H.; Font, JA; Müller, E., Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation, Astron. Astrophys., 393, 523-542 (2002) · doi:10.1051/0004-6361:20021053
[148] Dimmelmeier, H.; Ott, CD; Janka, H-T; Marek, A.; Müller, E., Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores, Phys. Rev. Lett., 98, 251101 (2007) · doi:10.1103/PhysRevLett.98.251101
[149] Drever, RWP; Deruelle, N.; Piran, T., Interferometric detectors for gravitational radiation, Gravitational Radiation (Rayonnenment Gravitationnel), 321-338 (1983), Amsterdam; New York: North-Holland; Elsevier, Amsterdam; New York
[150] Dupuis, RJ; Woan, G., Bayesian estimation of pulsar parameters from gravitational wave data, Phys. Rev. D, 72, 102002 (2005) · doi:10.1103/PhysRevD.72.102002
[151] Eckart, A.; Genzel, R., Observations of stellar proper motions near the Galactic Centre, Nature, 383, 415-417 (1996) · doi:10.1038/383415a0
[152] EGO, “European Gravitational Observatory Home Page”, project homepage. URL (cited on 08 November 2007): http://www.ego-gw.it/. 4.3.1
[153] European Space Agency, “Laser Interferometer Space Antenna”, project homepage. URL (cited on 08 November 2007): http://www.esa.int/esaSC/120376_index_0_m.html. 4.4.3
[154] European Space Agency, “Planck Home Page”, project homepage. URL (cited on 28 August 2008): http://www.rssd.esa.int/index.php?project=PLANCK. 8.1.4
[155] Faber, JA; Baumgarte, TW; Shapiro, SL; Taniguchi, K.; Rasio, FA; Alimi, J-M; Füzfa, A., Black Hole-Neutron Star Binary Merger Calculations: GRB Progenitors and the Stability of Mass Transfer, Albert Einstein Century International Conference, 622-629 (2006), Melville, NY: American Institute of Physics, Melville, NY
[156] Falcke, HD; van Haarlem, MP; de Bruyn, AG; Braun, R.; Rüottgering, HJA; Stappers, BW; Boland, WHWM; Butcher, HR; de Geus, EJ; Koopmans, LV; Fender, RP; Kuijpers, HJME; Miley, GK; Schilizzi, RT; Vogt, C.; Wijers, RAMJ; Wise, MW; Brouw, WN; Hamaker, JP; Noordam, JE; Oosterloo, T.; Bähren, L.; Brentjens, MA; Wijnholds, SJ; Bregman, JD; van Cappellen, WA; Gunst, AW; Kant, GW; Reitsma, J.; van der Schaaf, K.; de Vos, CM; van der Hucht, KA, A very brief description of LOFAR — the Low Frequency Array, Highlights of Astronomy 14, 386-387 (2008), Cambridge: Cambridge University Press, Cambridge
[157] Faulkner, J., Ultrashort-Period Binaries, Gravitational Radiation, and Mass Transfer. I. The Standard Model, with Applications to WZ Sagittae and Z Camelopardalis, Astrophys. J., 170, L99-L104 (1971) · doi:10.1086/180848
[158] Ferrari, V.; Matarrese, S.; Schneider, R., Gravitational Wave Background from a Cosmological Population of Core-Collapse Supernovae, Mon. Not. R. Astron. Soc., 303, 247-257 (1999) · doi:10.1046/j.1365-8711.1999.02194.x
[159] Finn, LS, Detection, measurement and gravitational radiation, Phys. Rev. D, 46, 5236-5249 (1992) · doi:10.1103/PhysRevD.46.5236
[160] Finn, LS, Aperture synthesis for gravitational-wave data analysis: Deterministic sources, Phys. Rev. D, 63, 102001 (2001) · doi:10.1103/PhysRevD.63.102001
[161] Finn, LS; Chernoff, DF, Observing binary inspiral in gravitational radiation: One interferometer, Phys. Rev. D, 47, 2198-2219 (1993) · doi:10.1103/PhysRevD.47.2198
[162] Finn, LS; Thorne, KS, Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA, Phys. Rev. D, 62, 124021 (2000) · doi:10.1103/PhysRevD.62.124021
[163] Flanagan, ÉÉ, Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations, Phys. Rev. D, 48, 2389-2407 (1993) · doi:10.1103/PhysRevD.48.2389
[164] Flanagan, ÉÉ; Hughes, SA, Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger and ringdown, Phys. Rev. D, 57, 4535-4565 (1998) · doi:10.1103/PhysRevD.57.4535
[165] Flanagan, ÉÉ; Hughes, SA, Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates, Phys. Rev. D, 57, 4566-4587 (1998) · doi:10.1103/PhysRevD.57.4566
[166] Friedman, JL; Schutz, BF, Secular instability of rotating newtonian stars, Astrophys. J., 222, 281-296 (1978) · doi:10.1086/156143
[167] Fryer, C.L., and New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, lrr-2003-2, (2003). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2003-2. 3.2 · Zbl 1316.83026
[168] Futamase, T., Point-particle limit and the far-zone quadrupole formula in general relativity, Phys. Rev. D, 32, 2566-2574 (1985) · doi:10.1103/PhysRevD.32.2566
[169] Futamase, T., and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2007-2. 2.4, 6.5.3 · Zbl 1255.83005
[170] Gair, JR; Barack, L.; Creighton, T.; Cutler, C.; Larson, SL; Phinney, ES; Vallisneri, M., Event rate estimates for LISA extreme mass ratio capture sources, Class. Quantum Grav., 21, S1595-S1606 (2004) · Zbl 1170.83358 · doi:10.1088/0264-9381/21/20/003
[171] Gair, JR; Glampedakis, K., Improved approximate inspirals of test-bodies into Kerr black holes, Phys. Rev. D, 73, 064037 (2006) · doi:10.1103/PhysRevD.73.064037
[172] Gair, JR; Jones, G., Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR), Class. Quantum Grav., 27, 1145-1168 (2007) · Zbl 1110.83309 · doi:10.1088/0264-9381/24/5/007
[173] Gavriil, FP; Gonzalez, ME; Gotthelf, EV; Kaspi, VM; Livingstone, MA; Woods, PM, Magnetar-Like Emission from the Young Pulsar in Kes 75, Science, 319, 1802-1805 (2008) · doi:10.1126/science.1153465
[174] Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, SM; Filippenko, AV; Green, R.; Grillmair, C.; Ho, LC; Kormendy, J.; Lauer, TR; Magorrian, J.; Pinkney, J.; Richstone, D.; Tremaine, S., A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, Astrophys. J. Lett., 539, L13-L16 (2000) · doi:10.1086/312840
[175] Giazotto, A.; Coccia, E.; Pizzella, G.; Ronga, F., The VIRGO Experiment: Status of the Art, Gravitational Wave Experiments, 86-99 (1995), Singapore: World Scientific, Singapore
[176] Glampedakis, K., Extreme Mass Ratio Inspirals: LISA’s unique probe of black hole gravity, Class. Quantum Grav., 22, S605-S659 (2005) · Zbl 1081.83017 · doi:10.1088/0264-9381/22/15/004
[177] Glampedakis, K.; Babak, S., Mapping spacetimes with LISA: Inspiral of a test-body in a ‘quasi-Kerr’ field, Class. Quantum Grav., 23, 4167-4188 (2006) · Zbl 1101.83304 · doi:10.1088/0264-9381/23/12/013
[178] Glampedakis, K.; Hughes, SA; Kennefick, D., Approximating the inspiral of test bodies into Kerr black holes, Phys. Rev. D, 66, 064005 (2002) · doi:10.1103/PhysRevD.66.064005
[179] Glampedakis, K.; Kennefick, D., Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction, Phys. Rev. D, 66, 044002 (2002) · doi:10.1103/PhysRevD.66.044002
[180] Gonzalez, JA; Sperhake, U.; Brügmann, B.; Hannam, M.; Husa, S., Total recoil: the maximum kick from nonspinning black-hole binary inspiral, Phys. Rev. Lett., 98, 091101 (2007) · Zbl 1228.83068 · doi:10.1103/PhysRevLett.98.091101
[181] Gottardi, L.; de Waard, A.; Usenko, A.; Frossati, G.; Podt, M.; Flokstra, J.; Bassan, M.; Fafone, V.; Minenkov, Y.; Rocchi, A., Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K, Phys. Rev. D, 76, 102005 (2007) · doi:10.1103/PhysRevD.76.102005
[182] Grishchuk, LP, Amplification of gravitational waves in an istropic universe, Sov. Phys. JETP, 40, 409-415 (1975)
[183] Grishchuk, LP, The implications of the microwave background anisotropies for laser-interferometer-tested gravitational waves, Class. Quantum Grav., 14, 1445-1454 (1997) · doi:10.1088/0264-9381/14/6/009
[184] Gürsel, Y.; Tinto, M., Near optimal solution to the inverse problem for gravitational-wave bursts, Phys. Rev. D, 40, 3884-3938 (1989) · doi:10.1103/PhysRevD.40.3884
[185] Haehnelt, MG; Folkner, WM, Supermassive black holes as sources for LISA, Laser Interferometer Space Antenna (LISA), 45-49 (1998), Woodbury, NY: American Institute of Physics, Woodbury, NY
[186] Helstrom, CW, Statistical Theory of Signal Detection (1968), Oxford; New York: Pergamon Press, Oxford; New York
[187] Heng, IS; Balasubramanian, R.; Sathyaprakash, BS; Schutz, BF, First steps towards characterizing the hierarchical algorithm for curves and ridges pipeline, Class. Quantum Grav., 21, S821-S826 (2004) · doi:10.1088/0264-9381/21/5/065
[188] Herrmann, F.; Hinder, I.; Shoemaker, D.; Laguna, P.; Matzner, RA, Gravitational recoil from spinning binary black hole mergers, Astrophys. J., 661, 430-436 (2007) · doi:10.1086/513603
[189] Hewish, A.; Bell, SJ; Pilkington, JDH; Scott, PF; Collins, RA, Observation of a Rapidly Pulsating Radio Source, Nature, 217, 709-713 (1968) · doi:10.1038/217709a0
[190] Hils, D.; Bender, PL; Webbink, RF, Gravitational radiation from the Galaxy, Astrophys. J., 360, 75-94 (1990) · doi:10.1086/169098
[191] Hjorth, J.; Sollerman, J.; Moller, P.; Fynbo, JPU; Woosley, SE; Kouveliotou, C.; Tanvir, NR; Greiner, J.; Andersen, MI; Castro-Tirado, AJ; Castro Cerón, JM; Fruchter, AS; Gorosabel, J.; Jakobsson, P.; Kaper, L.; Klose, S.; Masetti, N.; Pedersen, H.; Pedersen, K.; Pian, E.; Palazzi, E.; Rhoads, JE; Rol, E.; van den Heuvel, EPJ; Vreeswijk, PM; Watson, D.; Wijers, RAMJ, A very energetic supernova associated with the γ-ray burst of 29 March 2003, Nature, 423, 847-850 (2003) · doi:10.1038/nature01750
[192] Hogan, CJ; Folkner, WM, Cosmological Gravitational Wave Backgrounds, Laser Interferometer Space Antenna (LISA), 79-86 (1998), Woodbury, NY: American Institute of Physics, Woodbury, NY
[193] Hogan, CJ, Measurement of quantum fluctuations in geometry, Phys. Rev. D, 77, 104031 (2008) · doi:10.1103/PhysRevD.77.104031
[194] Hogan, CJ; Bender, PL, Estimating stochastic gravitational wave backgrounds with the Sagnac calibration, Phys. Rev. D, 64, 062002 (2001) · doi:10.1103/PhysRevD.64.062002
[195] Holz, DE; Hughes, SA, Using gravitational-wave standard sirens, Astrophys. J., 629, 15-22 (2005) · doi:10.1086/431341
[196] Hough, J.; Coccia, E.; Pizzella, G.; Ronga, F., LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements, Gravitational Wave Experiments, 50-63 (1995), Singapore: World Scientific, Singapore
[197] Hough, J., and Rowan, S., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2000-3. 1, 4.2.1 · Zbl 0944.83005
[198] Hughes, SA, Gravitational waves from extreme mass ratio inspirals: Challenges in mapping the spacetime of massive, compact objects, Class. Quantum Grav., 18, 4067-4074 (2001) · Zbl 0992.83021 · doi:10.1088/0264-9381/18/19/314
[199] Hughes, SA; Blandford, RD, Black hole mass and spin coevolution by mergers, Astrophys. J. Lett., 585, L101-L104 (2003) · doi:10.1086/375495
[200] Hulse, RA, Nobel Lecture: The discovery of the binary pulsar, Rev. Mod. Phys., 66, 699-710 (1994) · doi:10.1103/RevModPhys.66.699
[201] Hulse, RA; Taylor, JH, Discovery of a pulsar in a binary system, Astrophys. J., 195, L51-L53 (1975) · doi:10.1086/181708
[202] INFN, “IGEC: International Gravitational Event Collaboration”, project homepage. URL (cited on 08 November 2007): http://igec.lnl.infn.it/. 4.1
[203] INPE, Brasil, “Gravitational Waves — INPE”, project homepage. URL (cited on 08 November 2007): http://www.das.inpe.br/graviton/english.html. 4.1
[204] Jackson, N., “The Hubble Constant”, Living Rev. Relativity, 10, lrr-2007-4, (2007). URL (cited on 01 September 2008): http://www.livingreviews.org/lrr-2007-4. 8.3 · Zbl 1138.85001
[205] Jaranowski, P.; Królak, A., Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary, Phys. Rev. D, 49, 1723-1739 (1994) · doi:10.1103/PhysRevD.49.1723
[206] Jaranowski, P., and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 8, lrr-2005-3, (2005). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2005-3. 5 · Zbl 1071.83520
[207] Jaranowski, P.; Królak, A.; Kokkotas, KD; Tsegas, G., On the estimation of parameters of the gravitational-wave signal from a coalescing binary by a network of detectors, Class. Quantum Grav., 13, 1279-1307 (1996) · Zbl 0875.83017 · doi:10.1088/0264-9381/13/6/004
[208] Jenet, FA; Hobbs, GB; van Straten, W.; Manchester, RN; Bailes, M.; Verbiest, JPW; Edwards, RT; Hotan, AW; Sarkissian, JM; Ord, SM, Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects, Astrophys. J., 653, 1571-1576 (2006) · doi:10.1086/508702
[209] Jenet, FA; Lommen, A.; Larson, SL; Wen, L., Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B, Astrophys. J., 606, 799-803 (2004) · doi:10.1086/383020
[210] Kalogera, V., Kim, C., and Lorimer, D.R., “The Strongly Relativistic Double Pulsar and LISA (Galactic Double Neutron Stars for LISA)”, Invited talk at the 5th International LISA Symposium, ESTEC, Noordwijk, The Netherlands, 12-15 July 2004, conference paper, (2004). Related online version (cited on 17 December 2008): http://www.astro.northwestern.edu/Vicky/TALKS/LISA_0737.ppt. 7.3.6
[211] Kalogera, V.; Kim, C.; Lorimer, DR; Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, RN; Lyne, AG; Joshi, BC; McLaughlin, MA; Kramer, M.; Sarkissian, JM; Camilo, F., The Cosmic Coalescence Rates for Double Neutron Star Binaries, Astrophys. J. Lett., 601, L179-L182 (2004) · doi:10.1086/382155
[212] Kaspi, VM; Taylor, JH; Ryba, MF, High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21, Astrophys. J., 428, 713-728 (1994) · doi:10.1086/174280
[213] Kawamura, S.; Nakamura, T.; Ando, M.; Seto, N.; Tsubono, K., The Japanese space gravitational wave antenna-DECIGO, Class. Quantum Grav., 23, S125-S131 (2006) · doi:10.1088/0264-9381/23/8/S17
[214] Keating, B.G., “An ‘Ultrasonic Image’ of the Embryonic Universe: CMB Polarization Tests of the Inflationary Paradigm”, arXiv e-print, (2008). [arXiv:0806.1781]. 8, 8.1.4
[215] Keating, BG; Polnarev, AG; Miller, NJ; Baskaran, D., The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves, Int. J. Mod. Phys. A, 21, 2459-2479 (2006) · Zbl 1101.83316 · doi:10.1142/S0217751X06033076
[216] Klebesadel, RW; Strong, IB; Olson, RA, Observations of Gamma-Ray Bursts of Cosmic Origin, Astrophys. J., 182, L85-L88 (1973) · doi:10.1086/181225
[217] Klimenko, S.; Mitselmakher, G., A wavelet method for detection of gravitational wave bursts, Class. Quantum Grav., 21, S1819-S1830 (2004) · Zbl 1070.83514 · doi:10.1088/0264-9381/21/20/025
[218] Klimenko, S.; Yakushin, I.; Mercer, A.; Mitselmakher, G., Coherent method for detection of gravitational wave bursts, Class. Quantum Grav., 25, 114029 (2008) · doi:10.1088/0264-9381/25/11/114029
[219] Knispel, B.; Allen, B., Blandford’s Argument: The Strongest Continuous Gravitational Wave Signal, Phys. Rev. D, 78, 044031 (2008) · doi:10.1103/PhysRevD.78.044031
[220] Kokkotas, K.D., and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-1999-2. 3.5
[221] Komossa, S.; Burwitz, V.; Hasinger, G.; Predehl, P.; Kaastra, JS; Ikebe, Y., Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra, Astrophys. J. Lett., 582, L15-L19 (2003) · doi:10.1086/346145
[222] Komossa, S.; Zhou, H.; Lu, H., A recoiling supermassive black hole in the quasar SDSSJ092712.65+294344.0?, Astrophys. J. Lett., 678, L81-L84 (2008) · doi:10.1086/588656
[223] Kramer, M., “Pulsars with the SKA”, in Kramer, M., and Rawlings, S., eds., The Scientific Promise of the SKA, Proceedings of a workshop held at Oxford, 7 November 2002, pp. 85-92, (2003). [astro-ph/0306456]. 8.1.3
[224] Kramer, M.; Lobanov, AP; Zensus, JA; Cesarsyk, C.; Diamond, P., Fundamental Physics with the SKA: Strong-Field Tests of Gravity Using Pulsars and Black Holes, Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, 87-90 (2006), Berlin; New York: Springer, Berlin; New York
[225] Krishnan, B.; Sintes, AM; Papa, MA; Schutz, BF; Frasca, S.; Palomba, C., The Hough transform search for continuous gravitational waves, Phys. Rev. D, 70, 082001 (2004) · doi:10.1103/PhysRevD.70.082001
[226] Królak, A.; Schutz, BF, Coalescing binaries — Probe of the universe, Gen. Relativ. Gravit., 19, 1163-1171 (1987) · doi:10.1007/BF00759095
[227] Laboratori Nationali Legnaro, “AURIGA Bar Detector”, project homepage. URL (cited on 08 November 2007): http://www.auriga.lnl.infn.it/. 1, 4.1
[228] Lackey, BD; Nayyar, M.; Owen, BJ, Observational constraints on hyperons in neutron stars, Phys. Rev. D, 73, 024021 (2006) · doi:10.1103/PhysRevD.73.024021
[229] Lahav, O., and Suto, Y., “Measuring our Universe from Galaxy Redshift Surveys”, Living Rev. Relativity, 7, lrr-2004-8, (2004). URL (cited on 07 December 2004): http://www.livingreviews.org/lrr-2004-8. 8.2.1 · Zbl 1068.83514
[230] Landgraf, M.; Hechler, M.; Kemble, S., Mission design for LISA Pathfinder, Class. Quantum Grav., 22, S487-S492 (2005) · doi:10.1088/0264-9381/22/10/048
[231] Lang, RN; Hughes, SA, Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession, Phys. Rev. D, 74, 122001 (2006) · doi:10.1103/PhysRevD.74.122001
[232] Lang, RN; Hughes, SA, Localizing coalescing massive black hole binaries with gravitational waves, Astrophys. J., 677, 1184-1200 (2008) · doi:10.1086/528953
[233] Lattimer, JM; Swesty, FD, A generalized equation of state for hot, dense matter, Nucl. Phys. A, 535, 331-376 (1991) · doi:10.1016/0375-9474(91)90452-C
[234] Leiden University, “MiniGRAIL”, project homepage. URL (cited on 08 November 2007): http://www.minigrail.nl/. 4.1
[235] LIGO Laboratory, “Advanced LIGO”, project homepage. URL (cited on 08 November 2007): http://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml. 4.3.1
[236] LIGO Laboratory, “LIGO Scientific Collaboration”, project homepage. URL (cited on 08 November 2007): http://ligo.org/. 4.3.1
[237] LIGO Scientific Collaboration, “LSC Publications”, online resource. URL (cited on 08 November 2007): http://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html. 4.3.1
[238] Lindblom, L.; Detweiler, SL, On the secular instabilities of the Maclaurin spheroids, Astrophys. J., 211, 565-567 (1977) · doi:10.1086/154964
[239] Lindblom, L.; Mendell, G., Does gravitational radiation limit the angular velocities of superfluid neutron stars?, Astrophys. J., 444, 804-809 (1995) · doi:10.1086/175653
[240] Lindblom, L.; Owen, BJ, Effect of hyperon bulk viscosity on neutron-star r-modes, Phys. Rev. D, 65, 063006 (2002) · doi:10.1103/PhysRevD.65.063006
[241] Lindblom, L.; Owen, BJ; Morsink, SM, Gravitational radiation instability in hot young neutron stars, Phys. Rev. Lett., 80, 4843-4846 (1998) · doi:10.1103/PhysRevLett.80.4843
[242] Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 8, lrr-2005-7, (2005). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2005-7. 3.4.1, 4.4.2, 6.3
[243] Louisiana State University, “ALLEGRO Bar Detector”, project homepage. URL (cited on 08 November 2007): http://gravity.phys.lsu.edu/. 4.1
[244] Lück, H., The GEO600 project, Class. Quantum Grav., 14, 1471-1476 (1997) · doi:10.1088/0264-9381/14/6/012
[245] Lück, H., Status of the GEO600 detector, Class. Quantum Grav., 23, S71-S78 (2006) · doi:10.1088/0264-9381/23/8/S10
[246] Lyne, AG; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, RN; Camilo, F.; McLaughlin, MA; Lorimer, DR; D’Amico, N.; Joshi, BC; Reynolds, J.; Freire, PCC, A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics, Science, 303, 1153-1157 (2004) · doi:10.1126/science.1094645
[247] Lyne, AG; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, RN; Camilo, F.; McLaughlin, MA; Lorimer, DR; D’Amico, N.; Joshi, BC; Reynolds, J.; Freire, PCC, A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics, Science, 303, 1153-1157 (2004) · doi:10.1126/science.1094645
[248] Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 07 December 2004): http://www.livingreviews.org/lrr-2004-7. 8.2.1 · Zbl 1071.83571
[249] MacFadyen, AI; Woosley, SE, Collapsars: Gamma-ray bursts and explosions in ‘failed supernovae’, Astrophys. J., 524, 262-289 (1999) · doi:10.1086/307790
[250] MacLeod, CL; Hogan, CJ, Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information, Phys. Rev. D, 77, 043512 (2008) · doi:10.1103/PhysRevD.77.043512
[251] Marronetti, P.; Tichy, W.; Brügmann, B.; Gonzalez, J.; Sperhake, U., High-spin binary black hole mergers, Phys. Rev. D, 77, 064010 (2008) · doi:10.1103/PhysRevD.77.064010
[252] McClelland, DE; Bachor, H-A, Gravitational Astronomy: Instrument Design and Astrophysical Prospects (1991), Singapore; River Edge, NJ: World Scientific, Singapore; River Edge, NJ
[253] Megevand, A.; Astorga, F., Generation of baryon inhomogeneities in the electroweak phase transition, Phys. Rev. D, 71, 023502 (2005) · doi:10.1103/PhysRevD.71.023502
[254] Merritt, D.; Ekers, RD, Tracing black hole mergers through radio lobe morphology, Science, 297, 1310-1313 (2002) · doi:10.1126/science.1074688
[255] Merritt, D., and Milosavljević, M., “Massive Black Hole Binary Evolution”, Living Rev. Relativity, 8, lrr-2005-8, (2005). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2005-8. 7.2.4 · Zbl 1255.83072
[256] Mészáros, P.; Rees, MJ, Relativistic fireballs and their impact on external matter — Models for cosmological gamma-ray bursts, Astrophys. J., 405, 278-284 (1993) · doi:10.1086/172360
[257] Milosavljević, M.; Phinney, ES, The Afterglow of Massive Black Hole Coalescence, Astrophys. J. Lett., 622, L93-L96 (2005) · Zbl 1202.70060 · doi:10.1086/429618
[258] Mino, Y.; Shibata, M.; Tanaka, T., Gravitational waves induced by a spinning particle falling into a rotating black hole, Phys. Rev. D, 53, 622-634 (1996) · doi:10.1103/PhysRevD.53.622
[259] Misner, CW; Thorne, KS; Wheeler, JA, Gravitation (1973), San Francisco: W.H. Freeman, San Francisco
[260] Mohanty, SD, A robust test for detecting non-stationarity in data from gravitational wave detectors, Phys. Rev. D, 61, 122002 (2000) · doi:10.1103/PhysRevD.61.122002
[261] MPI for Gravitational Physics (Albert Einstein Institute), “GEO600: The German-British Gravitational Wave Detector”, project homepage. URL (cited on 08 November 2007): http://geo600.aei.mpg.de. 4.3.1
[262] Mukhanov, VF; Feldman, HA; Brandenberger, RH, Theory of cosmological perturbations, Phys. Rep., 215, 203-333 (1992) · doi:10.1016/0370-1573(92)90044-Z
[263] Mukhopadhyay, H.; Sago, N.; Tagoshi, H.; Dhurandhar, S.; Takahashi, H.; Kanda, N., Detecting gravitational waves from inspiraling binaries with a network of detectors: coherent versus coincident strategies, Phys. Rev. D, 74, 083005 (2006) · doi:10.1103/PhysRevD.74.083005
[264] Müller, E.; Marck, J-A; Lasota, J-P, Gravitational Waves from Core Collapse Supernovae, Relativistic Gravitation and Gravitational Radiation, 273-308 (1997), Cambridge: Cambridge University Press, Cambridge
[265] Nakamura, T.; Sasaki, M.; Tanaka, T.; Thorne, KS, Gravitational waves from coalescing black hole MACHO binaries, Astrophys. J. Lett., 487, L139-L142 (1997) · doi:10.1086/310886
[266] NASA, “Laser Interferometer Space Antenna”, project homepage. URL (cited on 08 November 2007): http://lisa.nasa.gov/. 4.4.3
[267] NASA, “NASA Vision Missions”, project homepage. URL (cited on 08 November 2007): http://universe.nasa.gov/program/vision.html. 4.4.3
[268] National Astronomical Observatory, Japan, “Large-Scale Cryogenic Gravitational-Wave Telescope Project”, project homepage. URL (cited on 28 August 2008): http://www.icrr.u-tokyo.ac.jp/gr/LCGT.html. 4.3.1
[269] National Astronomical Observatory, Japan, “TAMA300 Project”, project homepage. URL (cited on 08 November 2007): http://tamago.mtk.nao.ac.jp/. 4.3.1
[270] Nayyar, M.; Owen, BJ, R-modes of accreting hyperon stars as persistent sources of gravitational waves, Phys. Rev. D, 73, 084001 (2006) · doi:10.1103/PhysRevD.73.084001
[271] Nelemans, G.; Hameury, J-M; Lasota, J-P, AM CVn stars, The Astrophysics of Cataclysmic Variables and Related Objects, 27-40 (2005), San Francisco: Astronomical Society of the Pacific, San Francisco
[272] Nelemans, G.; Yungelson, LR; Portegies Zwart, SF, The gravitational wave signal from the Galactic disk population of binaries containing two compact objects, Astron. Astrophys., 375, 890-898 (2001) · doi:10.1051/0004-6361:20010683
[273] Nicholson, D.; Dickson, CA; Watkins, WJ; Schutz, BF; Shuttleworth, J.; Jones, GS; Robertson, DI; MacKenzie, NL; Strain, KA; Meers, BJ; Newton, GP; Ward, H.; Cantley, CA; Robertson, NA; Hough, J.; Danzmann, K.; Niebauer, TM; Ruediger, A.; Schilling, R.; Schnupp, L.; Winkler, W., Results of the first coincident observations by two laser-interferometric gravitational wave detectors, Phys. Lett. A, 218, 175-180 (1996) · doi:10.1016/0375-9601(96)00438-0
[274] Nicholson, D.; Vecchio, A., Bayesian bounds on parameter estimation accuracy for compact coalescing binary gravitational wave signals, Phys. Rev. D, 57, 4588-4599 (1998) · doi:10.1103/PhysRevD.57.4588
[275] Noyola, E.; Gebhardt, K.; Bergmann, M., Gemini and Hubble Space Telescope Evidence for an Intermediate Mass Black Hole in ω Centauri, Astrophys. J., 676, 1008-1015 (2008) · doi:10.1086/529002
[276] Ott, CD; Burrows, A.; Dessart, L.; Livne, E., A New Mechanism for Gravitational Wave Emission in Core-Collapse Supernovae, Phys. Rev. Lett., 96, 201102 (2006) · doi:10.1103/PhysRevLett.96.201102
[277] Owen, BJ, Search templates for gravitational waves from inspiralling binaries: Choise of template spacing, Phys. Rev. D, 53, 6749-6761 (1996) · doi:10.1103/PhysRevD.53.6749
[278] Owen, BJ; Lindblom, L.; Cutler, C.; Schutz, BF; Vecchio, A.; Andersson, N., Gravitational waves from hot young rapidly rotating neutron stars, Phys. Rev. D, 58, 084020 (1998) · doi:10.1103/PhysRevD.58.084020
[279] Owen, BJ; Sathyaprakash, BS, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Phys. Rev. D, 60, 022002 (1999) · doi:10.1103/PhysRevD.60.022002
[280] Page, L.; Hinshaw, G.; Komatsu, E.; Nolta, MR; Spergel, DN; Bennett, CL; Barnes, C.; Bean, R.; Dore, O.; Dunkley, J.; Halpern, M.; Hill, RS; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, SS; Odegard, N.; Peiris, HV; Tucker, GS; Verde, L.; Weiland, JL; Wollack, E.; Wright, EL, Three Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis, Astrophys. J. Suppl. Ser., 170, 335-376 (2007) · doi:10.1086/513699
[281] Pagel, BEJ, Helium and Big Bang nucleosynthesis, Phys. Rep., 333, 433-447 (2000) · doi:10.1016/S0370-1573(00)00033-8
[282] Pai, A.; Dhurandhar, S.; Bose, S., A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors, Phys. Rev. D, 64, 042004 (2001) · doi:10.1103/PhysRevD.64.042004
[283] Pan, Y.; Buonanno, A.; Chen, Y.; Vallisneri, M., Physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries, Phys. Rev. D, 69, 104017 (2004) · doi:10.1103/PhysRevD.69.104017
[284] Pan, Y., A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case, Phys. Rev. D, 77, 024014 (2008) · doi:10.1103/PhysRevD.77.024014
[285] Payne, DJB; Melatos, A.; Phinney, ES; Centrella, JM, Gravitational waves from an accreting neutron star with a magnetic mountain, Astrophysics of Gravitational Wave Sources, 92-95 (2003), Melville, NY: American Institute of Physics, Melville, NY
[286] Pearce, FR; Jenkins, A.; Frenk, CS; White, SDM; Thomas, PA; Couchman, HMP; Peacock, JA; Efstathiou, G., Simulations of galaxy formation in a cosmological volume, Mon. Not. R. Astron. Soc., 326, 649 (2001) · doi:10.1046/j.1365-8711.2001.04616.x
[287] Penzias, AA; Wilson, RW, A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophys. J., 142, 419-421 (1965) · doi:10.1086/148307
[288] Perlmutter, S.; The Supernova Cosmology Project, Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002 · doi:10.1086/307221
[289] Perryman, MAC; Turon, C.; O’Flaherty, KS, The Three-Dimensional Universe with Gaia (2005), Noordwijk: ESA Publications Division, Noordwijk
[290] Peters, PC; Mathews, J., Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev., 131, 435-440 (1963) · Zbl 0114.43902 · doi:10.1103/PhysRev.131.435
[291] Plissi, MV; Strain, KA; Torrie, CI; Robertson, NA; Killbourn, S.; Rowan, S.; Twyford, S.; Ward, H.; Skeldon, KD; Hough, J., Aspects of the suspension system for GEO600, Rev. Sci. Instrum., 69, 3055-3061 (1998) · doi:10.1063/1.1149054
[292] Poisson, E., “The Motion of Point Particles in Curved Spacetime”, Living Rev. Relativity, 7, lrr-2004-6, (2004). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2004-6. 6.5.3, 6.6.2 · Zbl 1071.83011
[293] Poisson, E.; Will, CM, Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms, Phys. Rev. D, 52, 848-855 (1995) · doi:10.1103/PhysRevD.52.848
[294] Pollney, D.; Reisswig, C.; Rezzolla, L.; Szilágyi, B.; Ansorg, M.; Deris, B.; Diener, P.; Dorband, EN; Koppitz, M.; Nagar, A.; Schnetter, E., Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations, Phys. Rev. D, 76, 124002 (2007) · doi:10.1103/PhysRevD.76.124002
[295] Portegies Zwart, SF; McMillan, SLW, Black hole mergers in the universe, Astrophys. J. Lett., 528, L17-L20 (2000) · doi:10.1086/312422
[296] Press, WH, Long Wave Trains of Gravitational Waves from a Vibrating Black Hole, Astrophys. J. Lett., 170, L105-L108 (1971) · doi:10.1086/180849
[297] Press, WH; Teukolsky, SA, Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric, Astrophys. J., 185, 649-673 (1973) · doi:10.1086/152445
[298] Pretorius, F., Evolution of binary black-hole spacetimes, Phys. Rev. Lett., 95, 121101 (2005) · doi:10.1103/PhysRevLett.95.121101
[299] Pretorius, F.; Colpi, M.; Casella, P.; Gorini, V.; Moschella, U.; Possenti, A., Binary Black Hole Coalescence, Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence (2009), Berlin; New York: Springer, Berlin; New York
[300] Pryke, C., Ade, P., Bock, J., Bowden, M., Brown, M.L., Cahill, G., Castro, P.G., Church, S., Culverhouse, T., Friedman, R., Ganga, K., Gear, W.K., Gupta, S., Hinderks, J., Kovac, J., Lange, A.E., Leitch, E., Melhuish, S.J., Memari, Y., Murphy, J.A., Orlando, A., Schwarz, R., O’Sullivan, C., Piccirillo, L., Rajguru, N., Rusholme, B., Taylor, A.N., Thompson, K.L., Turner, A.H., Wu, E.Y.S., and Zemcov, M. (QUaD collboration), “Second and third season QUaD CMB temperature and polarization power spectra”, Astrophys. J., submitted, (2008). [arXiv:0805.1944]. 8, 8.1.4
[301] Quinn, TC; Wald, RM, An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime, Phys. Rev. D, 56, 3381-3394 (1997) · doi:10.1103/PhysRevD.56.3381
[302] Raab, FJ; Coccia, E.; Pizzella, G.; Ronga, F., The LIGO Project: Progress and Prospects, Gravitational Wave Experiments (1995), Singapore; River Edge, NJ: World Scientific, Singapore; River Edge, NJ
[303] Raab, FJ; LIGO Scientific Collaboration, The status of laser interferometer gravitational-wave detectors, J. Phys.: Conf. Ser., 39, 25-31 (2006)
[304] Randall, L.; Servant, G., Gravitational waves from warped spacetime, J. High Energy Phys., 2007, 5, 054 (2007) · doi:10.1088/1126-6708/2007/05/054
[305] Rees, MJ, Gravitational waves from galactic centres?, Class. Quantum Grav., 14, 1411-1415 (1997) · doi:10.1088/0264-9381/14/6/004
[306] Rees, MJ; Meszaros, P., Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J., 430, L93-L96 (1994) · doi:10.1086/187446
[307] Regge, T.; Wheeler, JA, Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063-1069 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[308] Reisenegger, A.; Bonacic, AA, Millisecond pulsars with r-modes as steady gravitational radiators, Phys. Rev. Lett., 91, 201103 (2003) · doi:10.1103/PhysRevLett.91.201103
[309] Rezzolla, L.; Barausse, E.; Dorband, EN; Pollney, D.; Reisswig, C.; Seiler, J.; Husa, S., On the final spin from the coalescence of two black holes, Phys. Rev. D, 78, 044002 (2007) · doi:10.1103/PhysRevD.78.044002
[310] Rezzolla, L.; Diener, P.; Dorband, EN; Pollney, D.; Reisswig, C.; Schnetter, E.; Seiler, J., The final spin from the coalescence of aligned-spin black hole binaries, Astrophys. J. Lett., 674, L29-2L32 (2008) · doi:10.1086/528935
[311] Rezzolla, L.; Dorband, EN; Reisswig, C.; Diener, P.; Pollney, D.; Schnetter, E.; Szilágyi, B., Spin Diagrams for Equal-Mass Black-Hole Binaries with Aligned Spins, Astrophys. J., 679, 1422-1426 (2007) · doi:10.1086/587679
[312] Richstone, D.; Folkner, WM, Supermassive Black Holes Then and Now, Laser Interferometer Space Antenna (LISA) (1998), Woodbury, NY: American Institute of Physics, Woodbury, NY
[313] Riess, AG; Filippenko, AV; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, PM; Gilliland, RL; Hogan, CJ; Jha, S.; Kirshner, RP; Leibundgut, B.; Phillips, MM; Reiss, D.; Schmidt, BP; Schommer, RA; Smith, RC; Spyromilio, J.; Stubbs, C.; Suntzeff, NB; Tonry, J., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astrophys. J., 116, 1009-1038 (1998)
[314] Robinson, CAK; Sathyaprakash, BS; Sengupta, AS, A geometric algorithm for efficient coincident detection of gravitational waves, Phys. Rev. D, 78, 062002 (2008) · doi:10.1103/PhysRevD.78.062002
[315] Rover, C.; Meyer, R.; Christensen, N., Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data, Class. Quantum Grav., 23, 4895-4906 (2006) · Zbl 1099.83521 · doi:10.1088/0264-9381/23/15/009
[316] Rover, C.; Meyer, R.; Christensen, N., Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors, Phys. Rev. D, 75, 062004 (2007) · doi:10.1103/PhysRevD.75.062004
[317] Ryan, FD, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phys. Rev. D, 52, 5707-5718 (1995) · doi:10.1103/PhysRevD.52.5707
[318] Ryan, FD, Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral, Phys. Rev. D, 56, 1845-1855 (1997) · doi:10.1103/PhysRevD.56.1845
[319] Sasaki, M., and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6, (2003). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2003-6. 6.5.3, 6.6.2 · Zbl 1070.83019
[320] Sathyaprakash, BS; Dumarchez, J.; Trân Than Vân, J., Problem of searching for spinning black hole binaries, Gravitational Waves and Experimental Gravity (2004), Hanoi, Vietnam: The Gioi Publishers, Hanoi, Vietnam
[321] Sathyaprakash, BS; Dhurandhar, SV, Choice of filters for the detection of gravitational waves from coalescing binaries, Phys. Rev. D, 44, 3819-3834 (1991) · doi:10.1103/PhysRevD.44.3819
[322] Sathyaprakash, BS; Schutz, BF, Templates for stellar mass black holes falling into supermassive black holes, Class. Quantum Grav., 20, S209-S218 (2003) · Zbl 1027.83515 · doi:10.1088/0264-9381/20/10/324
[323] Schmidt, M., Spectrum of a Stellar Object Identified with the Radio Source 3C 286, Astrophys. J., 136, 684 (1962) · doi:10.1086/147424
[324] Schneider, R.; Ferrari, V.; Matarrese, S., Stochastic backgrounds of gravitational waves from cosmological populations of astrophysical sources, Nucl. Phys. B (Proc. Suppl.), 80, C722 (2000)
[325] Schneider, R.; Ferrari, V.; Matarrese, S.; Portegies Zwart, SF, Gravitational waves from cosmological compact binaries, Mon. Not. R. Astron. Soc., 324, 797 (2001) · doi:10.1046/j.1365-8711.2001.04217.x
[326] Schreier, E.; Levinson, R.; Gursky, H.; Kellogg, E.; Tananbaum, H.; Giacconi, R., Evidence for the Binary Nature of Centaurus X-3 from UHURU X-Ray Observations, Astrophys. J., 172, L79-L89 (1972) · doi:10.1086/180896
[327] Schutz, BF, Statistical formulation of gravitational radiation reaction, Phys. Rev. D, 22, 249-259 (1980) · doi:10.1103/PhysRevD.22.249
[328] Schutz, BF, Gravitational Waves on the Back of an Envelope, Am. J. Phys., 52, 412-419 (1984) · doi:10.1119/1.13627
[329] Schutz, BF, Determining the Hubble Constant from Gravitational Wave Observations, Nature, 323, 310-311 (1986) · doi:10.1038/323310a0
[330] Schutz, BF, Gravitational Wave Data Analysis (1989), Dordrecht; Boston: Kluwer, Dordrecht; Boston
[331] Schutz, BF; Blair, DG, Data Processing, Analysis and Storage for Interferometric Antennas, The Detection of Gravitational Waves, 406-452 (1991), Cambridge; New York: Cambridge University Press, Cambridge; New York
[332] Schutz, BF, A First Course in General Relativity (2009), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 1173.53002
[333] Schutz, BF; Ricci, F.; Ciufolini, I.; Gorini, V.; Moschella, U.; Frè, P., Gravitational Waves, Sources and Detectors, Gravitational Waves, 11-83 (2001), Bristol: Institute of Physics, Bristol · Zbl 0988.83001
[334] Schutz, BF; Tinto, M., Antenna patterns of interferometric detectors of gravitational waves — I. Linearly polarized waves, Mon. Not. R. Astron. Soc., 224, 131-154 (1987) · doi:10.1093/mnras/224.1.131
[335] Searle, AC; Sutton, PJ; Tinto, M.; Woan, G., Robust Bayesian detection of unmodelled bursts, Class. Quantum Grav., 25, 114038 (2008) · doi:10.1088/0264-9381/25/11/114038
[336] Shibata, M.; Uryū, K., Merger of black hole-neutron star binaries in full general relativity, Class. Quantum Grav., 24, S125-S137 (2007) · Zbl 1118.85313 · doi:10.1088/0264-9381/24/12/S09
[337] Sigurdsson, S., Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies, Class. Quantum Grav., 14, 1425-1429 (1997) · doi:10.1088/0264-9381/14/6/006
[338] Sigurdsson, S.; Rees, MJ, Capture of stellar-mass compact objects by massive black holes in galactic cusps, Mon. Not. R. Astron. Soc., 284, 318 (1996) · doi:10.1093/mnras/284.2.318
[339] Sintes, AM; Krishnan, B., Improved Hough search for gravitational wave pulsars, J. Phys.: Conf. Ser., 32, 206-211 (2006)
[340] Sivia, DS, Data Analysis: A Bayesian Tutorial (1996), Oxford; New York: Oxford University Press, Oxford; New York · Zbl 0884.62033
[341] Smak, J., Light Variability of HZ 29, Acta Astron., 17, 255-270 (1967)
[342] Smoot, GF; Bennett, CL; Kogut, A.; Wright, EL; Aymon, J.; Boggess, NW; Cheng, ES; de Amici, G.; Gulkis, S.; Hauser, MG; Hinshaw, G.; Jackson, PD; Janssen, M.; Kaita, E.; Kelsall, T.; Keegstra, P.; Lineweaver, C.; Loewenstein, K.; Lubin, P.; Mather, J.; Meyer, SS; Moseley, SH; Murdock, T.; Rokke, L.; Silverberg, RF; Tenorio, L.; Weiss, R., Structure in the COBE DMR First Year Maps, Astrophys. J. Lett., 396, L1-L5 (1992) · doi:10.1086/186504
[343] Spergel, DN; Bean, R.; Doré, O.; Nolta, MR; Bennett, CL; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; Peiris, HV; Verde, L.; Halpern, M.; Hill, RS; Kogut, A.; Limon, M.; Meyer, SS; Odegard, N.; Tucker, GS; Weiland, JL; Wollack, E.; Wright, EL, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, Astrophys. J. Suppl. Ser., 170, 377-408 (2007) · doi:10.1086/513700
[344] Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5, (2003). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2003-5. 3.4.3, 4.4.2 · Zbl 1068.83504
[345] Stappers, BW; Kramer, M.; Lyne, AG; D’Amico, N.; Jessner, A., The European Pulsar Timing Array, Chin. J. Astron. Astrophys. Suppl., 6, 298-303 (2006) · doi:10.1088/1009-9271/6/S2/56
[346] Steigman, G., Primordial Nucleosynthesis in the Precision Cosmology Era, Annu. Rev. Nucl. Part. Sci., 57, 463-491 (2007) · doi:10.1146/annurev.nucl.56.080805.140437
[347] Stergioulas, N.; Friedman, JL, Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars, Astrophys. J., 492, 301-322 (1998) · doi:10.1086/305030
[348] Stroeer, A.; Gair, JR; Vecchio, A.; Merkowitz, SM; Livas, JC, Automatic Bayesian inference for LISA data analysis strategies, Laser Interferometer Space Antenna, 444-451 (2006), Melville, NY: American Institute of Physics, Melville, NY
[349] Stroeer, A.; Vecchio, A., The LISA verification binaries, Class. Quantum Grav., 23, S809-S818 (2006) · Zbl 1117.85320 · doi:10.1088/0264-9381/23/19/S19
[350] Sumner, T.J., “Experimental Searches for Dark Matter”, Living Rev. Relativity, 5, lrr-2002-4, (2002). URL (cited on 07 December 2004): http://www.livingreviews.org/lrr-2002-4. 8.2.1 · Zbl 1023.83026
[351] Sutherland, W., Gravitational Microlensing — A Report on the MACHO Project, Rev. Mod. Phys., 71, 421-434 (1999) · doi:10.1103/RevModPhys.71.421
[352] Syracuse University Gravitational Wave Group, “Numerical Injection Analysis Project Home Page”, project homepage. URL (cited on 28 August 2008): https://www.gravity.phy.syr.edu/dokuwiki/doku.php?id=ninja:home. 6.5.2
[353] Tagoshi, H.; Mukhopadhyay, H.; Dhurandhar, S.; Sago, N.; Takahashi, H.; Kanda, N., Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent strategies by correlated detectors, Phys. Rev. D, 75, 087306 (2007) · doi:10.1103/PhysRevD.75.087306
[354] Tagoshi, H.; Shibata, M.; Tanaka, T.; Sasaki, M., Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v^8) beyond the quadrupole formula, Phys. Rev. D, 54, 1439-1459 (1996) · doi:10.1103/PhysRevD.54.1439
[355] Taylor, JH; Weisberg, JM, Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16, Astrophys. J., 345, 434-450 (1989) · doi:10.1086/167917
[356] Taylor, JH Jr, Nobel Lecture: Binary pulsars and relativistic gravity, Rev. Mod. Phys., 66, 711-719 (1994) · doi:10.1103/RevModPhys.66.711
[357] Teukolsky, SA, Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114-1118 (1972) · doi:10.1103/PhysRevLett.29.1114
[358] Teukolsky, SA, Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino-field perturbations, Astrophys. J., 185, 635-647 (1973) · doi:10.1086/152444
[359] Thorne, KS; Hawking, SW; Israel, W., Gravitational radiation, Three Hundred Years of Gravitation, 330-458 (1987), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 0966.83515
[360] Thorne, KS; Kolb, EW; Peccei, R., Gravitational waves, Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, 160-184 (1995), Singapore: World Scientific, Singapore
[361] Trias, M.; Sintes, AM, LISA observations of supermassive black holes: parameter estimation using full post-Newtonian inspiral waveforms, Phys. Rev. D, 77, 024030 (2008) · doi:10.1103/PhysRevD.77.024030
[362] Tsubono, K.; Coccia, E.; Pizzella, G.; Ronga, F., 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan, Gravitational Wave Experiments, 112-114 (1995), Singapore: World Scientific, Singapore
[363] Tsubono, K.; The TAMA Collaboration; Tsubono, K.; Fujimoto, M-K; Kuroda, K., TAMA Project, Gravitational Wave Detection, 183-191 (1997), Tokyo: Universal Academy Press, Tokyo
[364] Umstatter, R., Bayesian modeling of source confusion in LISA data, Phys. Rev. D, 72, 022001 (2005) · doi:10.1103/PhysRevD.72.022001
[365] Ungarelli, C.; Vecchio, A., High energy physics and the very early universe with LISA, Phys. Rev. D, 63, 64030, 1-14 (2001)
[366] Ungarelli, C.; Vecchio, A., Studying the anisotropy of the gravitational wave stochastic background with LISA, Phys. Rev. D, 64, 121501 (2001) · doi:10.1103/PhysRevD.64.121501
[367] University of Rome ‘La Sapienza’, “Rome Gravitational Wave Group”, project homepage. URL (cited on 08 November 2007): http://www.roma1.infn.it/rog/. 4.1
[368] University of Western Australia, “AIGRC”, project homepage. URL (cited on 08 November 2007): http://www.gravity.uwa.edu.au/. 4.3.1
[369] University of Wisconsin at Milwaukee, “EinsteinATHome Project Home Page”, project homepage. URL (cited on 08 November 2007): http://einstein.phys.uwm.edu/. 5.1.3.2
[370] Ushomirsky, G.; Cutler, C.; Bildsten, L., Deformations of accreting neutron star crusts and gravitational wave emission, Mon. Not. R. Astron. Soc., 319, 902-932 (2000) · doi:10.1046/j.1365-8711.2000.03938.x
[371] Vahlbruch, H.; Mehmet, M.; Chelkowski, S.; Hage, B.; Franzen, A.; Lastzka, N.; Gossler, S.; Danzmann, K.; Schnabel, R., Observation of Squeezed Light with 10-dB Quantum-Noise Reduction, Phys. Rev. Lett., 100, 033602 (2008) · doi:10.1103/PhysRevLett.100.033602
[372] Vallisneri, M., Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D, 77, 042001 (2008) · doi:10.1103/PhysRevD.77.042001
[373] Valtonen, MJ; Lehto, HJ; Nilsson, K.; Heidt, J.; Takalo, LO; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; Zola, S.; Wu, J-H; Zhou, X.; Sadakane, K.; Drozdz, M.; Koziel, D.; Marchev, D.; Ogloza, W.; Porowski, C.; Siwak, M.; Stachowski, G.; Winiarski, M.; Hentunen, V-P; Nissinen, M.; Liakos, A.; Dogru, S., A massive binary black-hole system in OJ 287 and a test of general relativity, Nature, 452, 851-853 (2008) · doi:10.1038/nature06896
[374] Van Den Broeck, C.; Sengupta, AS, Binary black hole spectroscopy, Class. Quantum Grav., 24, 1089-1114 (2007) · Zbl 1110.83323 · doi:10.1088/0264-9381/24/5/005
[375] Van Den Broeck, C.; Sengupta, AS, Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral. I. Signal-to-noise ratios, Class. Quantum Grav., 24, 155-176 (2007) · Zbl 1133.83329 · doi:10.1088/0264-9381/24/1/009
[376] van der Klis, M.; Buccheri, R.; van Paradijs, J.; Alpar, MA, Kilohertz quasi-periodic oscillations in low-mass X-ray binaries, The Many Faces of Neutron Stars, 337-368 (1998), Dordrecht: Kluwer Academic Publishers, Dordrecht
[377] Veitch, J.; Vecchio, A., Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection, Class. Quantum Grav., 25, 184010 (2008) · Zbl 1151.85335 · doi:10.1088/0264-9381/25/18/184010
[378] Veitch, J.; Vecchio, A., A Bayesian approach to the follow-up of candidate gravitational wave signals, Phys. Rev. D, 78, 022001 (2008) · doi:10.1103/PhysRevD.78.022001
[379] Vilenkin, A.; Shellard, EPS, Cosmic Strings and Other Topological Defects (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0978.83052
[380] VIRGO Project, “VIRGO Project Home Page”, project homepage. URL (cited on 08 November 2007): http://wwwcascina.virgo.infn.it/. 4.3.1
[381] Vishveshwara, CV, Scattering of gravitational radiation by a Schwarzschild black-hole, Nature, 227, 936-938 (1970) · doi:10.1038/227936a0
[382] Vishveshwara, CV, Stability of the Schwarzschild metric, Phys. Rev. D, 1, 2870-2879 (1970) · doi:10.1103/PhysRevD.1.2870
[383] Wagoner, RV, Gravitational radiation from accreting neutron stars, Astrophys. J., 278, 345-348 (1984) · doi:10.1086/161798
[384] Watson, AA, Observations of ultra-high energy cosmic rays, J. Phys.: Conf. Ser., 39, 365-371 (2006)
[385] Watts, A., Krishnan, B., Bildsten, L., and Schutz, B.F., “Detecting gravitational wave emission from the known accreting neutron stars”, Mon. Not. R. Astron. Soc., accepted, (2008). [arXiv:0803.4097]. 7, 7.3.5, 7.4
[386] Watts, AL; Strohmayer, TE, High frequency oscillations during magnetar flares, Astrophys. Space Sci., 308, 625-629 (2007) · doi:10.1007/s10509-007-9296-z
[387] Weber, J., Gravitational radiation, Phys. Rev. Lett., 18, 498-501 (1967) · doi:10.1103/PhysRevLett.18.498
[388] Weisberg, JM; Taylor, JH; Rasio, FA; Stairs, IH, The Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis, Binary Radio Pulsars, 25-32 (2005), San Francisco: Astronomical Society of the Pacific, San Francisco
[389] Wen, L.; Gair, JR, Detecting extreme mass ratio inspirals with LISA using time-frequency methods, Class. Quantum Grav., 22, S445-S452 (2005) · doi:10.1088/0264-9381/22/10/041
[390] Wen, L.; Schutz, BF, Coherent network detection of gravitational waves: the redundancy veto, Class. Quantum Grav., 22, S1321-S1336 (2005) · Zbl 1081.83520 · doi:10.1088/0264-9381/22/18/S46
[391] Whelan, JT; Daw, E.; Heng, IS; McHugh, MP; Lazzarini, A., Phenomenological template family for black-hole coalescence waveforms, Class. Quantum Grav., 20, S689 (2003) · Zbl 1206.83092 · doi:10.1088/0264-9381/20/17/312
[392] Will, CM, Theory and Experiment in Gravitational Physics (1993), Cambridge; New York: Cambridge University Press, Cambridge; New York · Zbl 0785.53068
[393] Will, CM, Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries, Phys. Rev. D, 57, 2061-2068 (1998) · doi:10.1103/PhysRevD.57.2061
[394] Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). URL (cited on 03 September 2007): http://www.livingreviews.org/lrr-2006-3. 3.4.3, 6.2, 6.3 · Zbl 1316.83020
[395] Willke, B.; Ajith, P.; Allen, B.; Aufmuth, P.; Aulbert, C., The GEO-HF project, Class. Quantum Grav., 23, S207-S214 (2006) · doi:10.1088/0264-9381/23/8/S26
[396] Willke, B.; LIGO Scientific Collaboration, GEO600: status and plans, Class. Quantum Grav., 24, S389-S397 (2007) · Zbl 1206.83066 · doi:10.1088/0264-9381/24/19/S02
[397] Woosley, SE, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J., 405, 273-277 (1993) · doi:10.1086/172359
[398] Zerilli, FJ, Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics, Phys. Rev. D, 2, 2141-2160 (1970) · Zbl 1227.83025 · doi:10.1103/PhysRevD.2.2141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.