×

The broadcast classical-quantum capacity region of a two-phase bidirectional relaying channel. (English) Zbl 1327.81081

Summary: We studied a three-node quantum network that enables bidirectional communication between two nodes with a half-duplex relay node for transmitting classical messages. A decode-and-forward protocol is used to perform the communication in two phases. In the first phase, the messages of two nodes are transmitted to the relay node. The capacity of the first phase is well known by previous works. In the second phase, the relay node broadcasts a re-encoded composition to the two nodes. We determine the capacity region of the broadcast phase. To the best of our knowledge, this is the first paper analyzing quantum bidirectional relay networks.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
94A40 Channel models (including quantum) in information and communication theory
68M10 Network design and communication in computer systems

References:

[1] Abruzzo, S., Bratzik, S., Bernardes, N.K., Kampermann, H., van Loock, P., Bruß, D.: Quantum repeaters and quantum key distribution: analysis of secret key rates. Phys. Rev. A 87, 052315 (2013) · doi:10.1103/PhysRevA.87.052315
[2] Ahlswede, R.: On two-way communication channels and a problem by Zarankiewicz. In: Sixth Prague Conf. on Inf. Th., Stat. Dec. Fct’s and Rand. Proc., Publ. House Chechosl. Academy of Sc., Prague, pp. 23-37 (1973) · Zbl 0287.94022
[3] Ahlswede, R.: Multi-way communication channels. In: Proceedings of 2nd International Symposium on Information Theory, Thakadsor, Armenian SSR, 1971, Akademiai Kiado, Budapest, pp. 23-52 (1973) · Zbl 1323.94086
[4] Ahlswede, R., Blinovsky, V.: Classical capacity of arbitrarily classical-quantum varying channels. IEEE Trans. Inf. Theory 53(2), 526-533 (2007) · Zbl 1310.94057 · doi:10.1109/TIT.2006.889004
[5] Andersson, M., Schaefer (Wyrembelski), R.F., Oechtering, T.J., Skoglund, M.: Polar coding for bidirectional broadcast channels with common and confidential messages. IEEE J. Sel. Areas Commun. 31(9), 1901-1908 (2013) · Zbl 1310.94057
[6] Bergmans, P.P.: Random coding theorem for broadcast channels with degraded components. IEEE Trans. Inf. Theory IT-19(2), 197-207 (1973) · Zbl 1364.94436
[7] Bjelaković, I., Boche, H., Janßen, G., Nötzel, J.: Arbitrarily varying and compound classical-quantum channels and a note on quantum zero-error capacities. In: Aydinian, H., Cicalese, F., Deppe, C. (eds.) Information Theory, Combinatorics, and Search Theory, in Memory of Rudolf Ahlswede, LNCS, vol. 7777, pp. 247-283. arXiv:1209.6325 (2012) · Zbl 1334.81022
[8] Boche, H., Cai, M., Deppe, C.: Classical-quantum arbitrarily varying wiretap channel—capacity formula with Ahlswede Dichotomy-resources. arXiv:1307.8007 (2014) · Zbl 1371.81061
[9] Boche, H., Cai, N., Nötzel, J.: The classical-quantum channel with random state parameters known to the sender. arXiv:1506.06479 (2015) · Zbl 1435.81051
[10] Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters for communication. arXiv:quant-ph/9803056v1 (1998) · Zbl 0982.81016
[11] Cai, N., Winter, A., Yeung, R.W.: Quantum privacy and quantum wiretap channels. Probl. Inf. Transm. 40(4), 318-336 (2004) · Zbl 1081.94012 · doi:10.1007/s11122-004-0002-2
[12] Cover, T.M., El Gamal, A.: Capacity theorems for the relay channel. IEEE Trans. Inf. Theory IT-25(5), 572-584 (1979) · Zbl 0419.94004
[13] Devetak, I.: The private classical information capacity and quantum information capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44-55 (2005) · Zbl 1293.94063 · doi:10.1109/TIT.2004.839515
[14] Do, T.T., Oechtering, T.J., Skoglund, M.: Optimal transmission for the MIMO bidirectional broadcast channel in the wideband regime. IEEE Trans. Signal Proces. 61(20), 5103-5116 (2013) · Zbl 1393.94803 · doi:10.1109/TSP.2013.2272553
[15] Dueck, G.: Maximal error capacity regions are smaller than average error capacity regions for multi-user channels. Probl. Control Inf. Theory 7(1), 11-19 (1978) · Zbl 0384.94015
[16] Eisert, J., Wolf, M.M.: Gaussian Quantum Channels, Quantum Information with Continuous Variables of Atoms and Light. Imperial College Press, London (2007) · Zbl 1132.81318
[17] El Gamal, A., Van der Meulen, E.: A proof of Marton’s coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory IT-27, 120-122 (1981) · Zbl 0455.94007
[18] Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49(7), 1753-1768 (2003) · Zbl 1301.94053 · doi:10.1109/TIT.2003.813556
[19] Holevo, A.: Statistical problems in quantum physics. In: Maruyama, G., Prokhorov, J.V. (eds.) Proceedings of the Second Japan-USSR Symposium on Probability Theory, ser. Lecture Notes in Mathematics, vol. 330, pp. 104-119. Springer, Berlin (1973) · Zbl 0265.62037
[20] Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269-273 (1998) · Zbl 0897.94008 · doi:10.1109/18.651037
[21] Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009) · doi:10.1103/PhysRevA.79.042306
[22] Jacobs, B.C., Pittman, T.B., Franson, J.D.: Quantum relays and noise suppression using linear optics. Phys. Rev. A 66(5), 1-6 (2002) · doi:10.1103/PhysRevA.66.052307
[23] Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity for relay networks. IEEE Trans. Inf. Theory 51(9), 3037-3063 (2005) · Zbl 1297.94019 · doi:10.1109/TIT.2005.853304
[24] Liao, H.: Multiple access channels, Ph.D. dissertation, Department of Electrical Engineering, University of Hawaii, Honolulu (1972)
[25] Marton, K.: A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory IT-25, 306-311 (1979) · Zbl 0401.94016
[26] Oechtering, T.J., Boche, H.: Stability region of an optimized bidirectional regenerative half-duplex relaying protocol. IEEE Trans. Commun. 56(9), 1519-1529 (2008) · doi:10.1109/TCOMM.2008.060399
[27] Oechtering, T.J., Boche, H.: Bidirectional regenerative half-duplex relaying using relay selection. IEEE Trans. Wirel. Commun. 7(5), 1879-1888 (2008) · doi:10.1109/TWC.2008.060673
[28] Oechtering, T.J., Boche, H.: Optimal time-division for bidirectional relaying using superposition encoding. IEEE Commun. Lett. 12(4), 265-267 (2008) · doi:10.1109/LCOMM.2008.071860
[29] Oechtering, T.J., Jorswieck, E.A., Schaefer (Wyrembelski), R.F., Boche, H.: On the optimal transmit strategy for the MIMO bidirectional broadcast channel. IEEE Trans
[30] Oechtering, T.J., Skoglund, M.: Bidirectional broadcast channel with random states noncausally known at the encoder. IEEE Trans. Inf. Theory 59(1), 64-75 (2013) · Zbl 1364.94436 · doi:10.1109/TIT.2012.2217074
[31] Oechtering, T.J., Schaefer (Wyrembelski), R.F., Boche, H.: Multiantenna bidirectional broadcast channels—optimal transmit strategies. IEEE Trans. Signal Process. 57(5), 1948-1958, 2009 (IEEE Trans. Commun., 57(12) 3817-3826, 2009) · Zbl 1391.94691
[32] Oechtering, T.J., Schnurr, C., Bjelaković, I., Boche, H.: Broadcast capacity region of two-phase bidirectional relaying. IEEE Trans. Inf. Theory 54(1), 454-458 (2008) · Zbl 1305.94009 · doi:10.1109/TIT.2007.911158
[33] Ogawa, T., Nagaoka, H.: Making good codes for classical-quantum channel coding via quantum hypothesis testing. IEEE Trans. Inf. Theory 53(6), 2261-2266 (2007) · Zbl 1323.94086 · doi:10.1109/TIT.2007.896874
[34] Savov, I., Wilde, M.: Classical codes for quantum broadcast channels. In: Proceedings of ISIT 2012, pp. 721-725 (2012) · Zbl 1364.81071
[35] Savov, I., Wilde, M., Vu, M.: Partial decode-forward for quantum relay channels. In: Proceedings of ISIT 2012, pp. 731-735 (2012) · Zbl 1081.94012
[36] Schaefer (Wyrembelski), R.F., Oechtering, T.J., Boche, H.: MIMO Gaussian bidirectional broadcast channels with common messages. IEEE Trans. Wirel. Commun. 10(9), 2950-2959 (2011)
[37] Schaefer (Wyrembelski), R.F., Bjelaković, I., Oechtering, T.J., Boche, H.: Optimal coding strategies for bidirectional broadcast channels under channel uncertainty. IEEE Trans. Commun. 58(10), 2984-2994 (2010)
[38] Schaefer (Wyrembelski), R.F., Wiese, M., Boche, H.: Strong secrecy in bidirectional broadcast channels with confidential messages. IEEE Trans. Inf. Forensics Secur. 8(2), 324-334 (2013)
[39] Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131-138 (1997) · doi:10.1103/PhysRevA.56.131
[40] Wilde, M.: Quantum Inf. Theory. Cambridge University Press, Cambridge (2013) · Zbl 1296.81001 · doi:10.1017/CBO9781139525343
[41] Wilde, M., Guha, S.: Polar codes for classical-quantum channels. IEEE Trans. Inf. Theory 59(2), 1175-1187 (2013) · Zbl 1364.81071 · doi:10.1109/TIT.2012.2218792
[42] Winter, A.: Coding theorem and strong converse for quantum channels. IEEE Trans. Inf. Theory 45(7), 2481-2485 (1999) · Zbl 0965.94007 · doi:10.1109/18.796385
[43] Winter, A.: The capacity of the quantum multiple-access channel. IEEE Trans. Inf. Theory 47(7), 3059-3065 (2001) · Zbl 1021.94517 · doi:10.1109/18.959287
[44] Yard, J., Hayden, P., Devetak, I.: Capacity theorems for quantum multiple access channels—classical-quantum and quantum-quantum capacity regions. IEEE Trans. Inf. Theory 54(7), 3091-3113 (2008) · Zbl 1328.94054 · doi:10.1109/TIT.2008.924665
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.